Sabbaghi Soroush, Hosseinian Ehsan, Bazargan Vahid
Department of Mechanical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 14399-57131, Iran.
ACS Appl Mater Interfaces. 2024 May 1;16(17):22676-22688. doi: 10.1021/acsami.4c01503. Epub 2024 Apr 17.
Two-dimensional polymorphic transition-metal dichalcogenides have drawn attention for their diverse applications. This work explores the complex interplay between strain-induced phase transformation and crack growth behavior in annealed nanocrystalline MoS. Employing molecular dynamics (MD) simulations, this research focuses on the effect of grain size, misorientation, and annealing on phase evolution and their effects on the mechanical behavior of MoS. First, examining phase transformation in monocrystalline MoS under various stress states reveals distinct behaviors depending on the initial phase (1T or 2H) and crystallographic orientation with respect to loading directions. Notably, transformation from a layered hexagonal to a body-centered tetragonal structure is more noticeable when strain in a zigzag direction is applied to the 1T sample. As such, single crystalline MoS with a 1T phase exhibits a 16% lower fracture stress in the armchair direction compared to that with a 2H phase. On the other hand, the 1T phase shows a 5% higher phonon lifetime compared to the 2H phase with similar phonon group velocities. Next, the influence of thermal energy and mechanical stress on the phase transformation of nanocrystalline MoS is investigated through annealing and quenching cycles, uncovering 60 and 44% irreversibility of phase transformation for an average grain size of 3 and 11 nm, respectively. Besides, the evolution of nanocrystalline samples with different initial phases and grain sizes is studied under uniaxial and biaxial stress. This study shows an inverse pseudo-Hall-Petch effect with exponents of 0.11 and 0.09 for 2H and 1T, respectively. The study reveals that phase transformation can occur concurrently with crack initiation and propagation with the 1T phase exhibiting a 19% lower grain size sensitivity of fracture stress compared to the 2H phase.
二维多晶型过渡金属二硫属化物因其多样的应用而备受关注。本工作探究了退火纳米晶MoS中应变诱导相变与裂纹扩展行为之间的复杂相互作用。采用分子动力学(MD)模拟,本研究聚焦于晶粒尺寸、取向差和退火对相演变的影响及其对MoS力学行为的作用。首先,研究单晶MoS在各种应力状态下的相变,结果表明,根据初始相(1T或2H)以及相对于加载方向的晶体取向,会呈现出不同的行为。值得注意的是,当沿之字形方向对1T样品施加应变时,从层状六方结构向体心四方结构的转变更为明显。因此,与2H相的单晶MoS相比,1T相的单晶MoS在扶手椅方向上的断裂应力低16%。另一方面,与声子群速度相似的2H相相比,1T相的声子寿命高5%。其次,通过退火和淬火循环研究了热能和机械应力对纳米晶MoS相变的影响,发现平均晶粒尺寸为3和11 nm时,相变的不可逆性分别为60%和44%。此外,研究了不同初始相和晶粒尺寸的纳米晶样品在单轴和双轴应力下的演变。该研究表明,对于2H和1T,分别存在指数为0.11和0.09的反假霍尔 - 佩奇效应。研究发现,相变可与裂纹萌生和扩展同时发生,与2H相相比,1T相的断裂应力晶粒尺寸敏感性低19%。