NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) , Trondheim 7491, Norway.
Faculty of Engineering, China University of Geosciences , Wuhan, Hubei 430074, PR China.
Nano Lett. 2018 Feb 14;18(2):1543-1552. doi: 10.1021/acs.nanolett.7b05433. Epub 2018 Feb 5.
Pristine monocrystalline molybdenum disulfide (MoS) possesses high mechanical strength comparable to that of stainless steel. Large-area chemical-vapor-deposited monolayer MoS tends to be polycrystalline with intrinsic grain boundaries (GBs). Topological defects and grain size skillfully alter its physical properties in a variety of materials; however, the polycrystallinity and its role played in the mechanical performance of the emerging single-layer MoS remain largely unknown. Here, using large-scale atomistic simulations, GB structures and mechanical characteristics of realistic single-layered polycrystalline MoS of varying grain size prepared by confinement-quenched method are investigated. Depending on misorientation angle, structural energetics of polar-GBs in polycrystals favor diverse dislocation cores, consistent with experimental observations. Polycrystals exhibit grain-size-dependent thermally induced global out-of-plane deformation, although defective GBs in MoS show planar structures that are in contrast to the graphene. Tensile tests show that presence of cohesive GBs pronouncedly deteriorates the in-plane mechanical properties of MoS. Both stiffness and strength follow an inverse pseudo Hall-Petch relation to grain size, which is shown to be governed by the weakest link mechanism. Under uniaxial tension, transgranular crack propagates with small deflection, whereas upon biaxial stretching, the crack grows in a kinked manner with large deflection. These findings shed new light in GB-based engineering and control of mechanical properties of MoS crystals toward real-world applications in flexible electronics and nanoelectromechanical systems.
原始的单晶二硫化钼(MoS)具有与不锈钢相当的高强度。大面积化学气相沉积的单层 MoS 往往是多晶的,具有内在的晶界(GB)。拓扑缺陷和晶粒尺寸巧妙地改变了各种材料的物理性质;然而,多晶型及其在新兴单层 MoS 机械性能中的作用在很大程度上仍然未知。在这里,使用大规模原子模拟,研究了通过限制淬火方法制备的不同晶粒尺寸的真实单层多晶 MoS 的 GB 结构和力学特性。根据位向角的不同,多晶体中极性 GB 的结构能学有利于各种位错核心,这与实验观察一致。多晶体表现出依赖于晶粒尺寸的热诱导整体面外变形,尽管 MoS 中的缺陷 GB 呈现出与石墨烯相反的平面结构。拉伸试验表明,存在内聚 GB 会显著恶化 MoS 的面内力学性能。MoS 的刚度和强度都遵循与晶粒尺寸成反比的伪 Hall-Petch 关系,这表明它受最弱链机制的控制。在单向拉伸下,穿晶裂纹以小的偏转角传播,而在双向拉伸下,裂纹以大的偏转角呈曲折状扩展。这些发现为基于晶界的工程和 MoS 晶体机械性能的控制提供了新的思路,为柔性电子学和纳机电系统中的实际应用提供了参考。