Grygoryev Konstantin, Lu Huihui, Sørensen Simon, Talebi Varnosfaderani Omid, Georgel Rachel, Li Liyao, Burke Ray, Andersson-Engels Stefan
Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland.
Department of Physics, University College Cork, College Road, Cork, Ireland.
Biomed Opt Express. 2024 Mar 14;15(4):2377-2391. doi: 10.1364/BOE.516574. eCollection 2024 Apr 1.
Identification of tumour margins during resection of the brain is critical for improving the post-operative outcomes. Due to the highly infiltrative nature of glioblastoma multiforme (GBM) and limited intraoperative visualization of the tumour margin, incomplete surgical resection has been observed to occur in up to 80 % of GBM cases, leading to nearly universal tumour recurrence and overall poor prognosis of 14.6 months median survival. This research presents a miniaturized, SiPMT-based optical system for simultaneous measurement of powerful DRS and weak auto-fluorescence for brain tumour detection. The miniaturisation of the optical elements confined the spatial separation of eight select wavelengths into footprint measuring 1.5 × 2 × 16 mm. The small footprint enables this technology to be integrated with existing surgical guidance instruments in the operating room. It's dynamic ability to subtract any background illumination and measure signal intensities across a broad range from pW to mWs make this design much more suitable for clinical environments as compared to spectrometer-based systems with limited dynamic ranges and high integration times. Measurements using optical tissue phantoms containing mixed fluorophores demonstrate correlation coefficients between the fitted response and actual concentration using PLS regression being 0.95, 0.87 and 0.97 for NADH, FAD and PpIX , respectively. These promising results indicate that our proposed miniaturized instrument could serve as an effective alternative in operating rooms, assisting surgeons in identifying brain tumours to achieving positive surgical outcomes for patients.
在脑肿瘤切除过程中识别肿瘤边缘对于改善术后结果至关重要。由于多形性胶质母细胞瘤(GBM)具有高度浸润性,且术中对肿瘤边缘的可视化有限,据观察,高达80%的GBM病例会出现手术切除不完全的情况,导致几乎普遍的肿瘤复发和中位生存期仅14.6个月的总体不良预后。本研究提出了一种基于硅光电倍增管(SiPMT)的小型光学系统,用于同时测量用于脑肿瘤检测的强漫反射光谱(DRS)和弱自发荧光。光学元件的小型化将八个选定波长的空间分离限制在尺寸为1.5×2×16毫米的区域内。小尺寸使得该技术能够与手术室现有的手术引导仪器集成。与动态范围有限且积分时间长的基于光谱仪的系统相比,其能够减去任何背景照明并测量从皮瓦到毫瓦的宽范围内信号强度的动态能力,使得该设计更适合临床环境。使用含有混合荧光团的光学组织模型进行的测量表明,使用偏最小二乘回归(PLS)时,拟合响应与实际浓度之间的相关系数对于还原型烟酰胺腺嘌呤二核苷酸(NADH)、黄素腺嘌呤二核苷酸(FAD)和原卟啉IX(PpIX)分别为0.95、0.87和0.97。这些有前景的结果表明,我们提出的小型仪器可作为手术室中的一种有效替代方案,协助外科医生识别脑肿瘤,为患者实现积极的手术结果。