Suppr超能文献

用于生物光子学应用的漫射光学固态体模配方:迈向解剖学正确的三维组织体模的一步。

Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms.

作者信息

Sekar Sanathana Konugolu Venkata, Pacheco Andrea, Martella Pierluigi, Li Haiyang, Lanka Pranav, Pifferi Antonio, Andersson-Engels Stefan

机构信息

Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland.

Department of Physics, University College Cork, College Road, Cork, T12 K8AF, Ireland.

出版信息

Biomed Opt Express. 2019 Mar 28;10(4):2090-2100. doi: 10.1364/BOE.10.002090. eCollection 2019 Apr 1.

Abstract

We present a tissue mimicking optical phantom recipe to create robust well tested solid phantoms. The recipe consists of black silicone pigment (absorber), silica microspheres (scatterer) and silicone rubber (SiliGlass, bulk material). The phantom recipe was characterized over a broadband spectrum (600-1100 nm) for a wide range of optical properties (absorption 0.1-1 cm, reduced scattering 5-25 cm) that are relevant to human organs. The results of linearity show a proper scaling of optical properties as well as the absence of coupling between the absorber and scatterer at different concentrations. A reproducibility of 4% among different preparations was obtained, with a similar grade of spatial homogeneity. Finally, a 3D non-scattering mock-up phantom of an infant torso made with the same recipe bulk material (SiliGlass) was presented to project the futuristic aspect of our work that is 3D printing human organs of biomedical relevance.

摘要

我们提出了一种组织模拟光学体模配方,以创建经过充分测试的坚固固体体模。该配方由黑色硅酮颜料(吸收剂)、二氧化硅微球(散射剂)和硅橡胶(SiliGlass,基体材料)组成。该体模配方在宽光谱范围(600 - 1100 nm)内针对与人体器官相关的广泛光学特性(吸收系数0.1 - 1 cm,约化散射系数5 - 25 cm)进行了表征。线性度结果表明光学特性具有适当的比例关系,并且在不同浓度下吸收剂和散射剂之间不存在耦合。不同制备之间的重现性为4%,空间均匀性等级相似。最后,展示了一个用相同配方基体材料(SiliGlass)制作的婴儿躯干三维无散射模型体模,以展现我们工作的未来发展方向,即3D打印具有生物医学相关性的人体器官。

相似文献

1
Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms.
Biomed Opt Express. 2019 Mar 28;10(4):2090-2100. doi: 10.1364/BOE.10.002090. eCollection 2019 Apr 1.
2
Solid optical tissue phantom tools based on upconverting nanoparticles for biomedical applications.
J Biomed Opt. 2023 Mar;28(3):036004. doi: 10.1117/1.JBO.28.3.036004. Epub 2023 Mar 11.
4
Optical properties of PlatSil SiliGlass tissue-mimicking phantoms.
Biomed Opt Express. 2020 Jun 16;11(7):3753-3768. doi: 10.1364/BOE.391720. eCollection 2020 Jul 1.
6
Effects of phantom microstructure on their optical properties.
J Biomed Opt. 2024 Sep;29(9):093502. doi: 10.1117/1.JBO.29.9.093502. Epub 2024 May 6.
7
Geometrically complex 3D-printed phantoms for diffuse optical imaging.
Biomed Opt Express. 2017 Feb 23;8(3):1754-1762. doi: 10.1364/BOE.8.001754. eCollection 2017 Mar 1.
8
Reproducibility of identical solid phantoms.
J Biomed Opt. 2022 Feb;27(7). doi: 10.1117/1.JBO.27.7.074713.
9
Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics.
J Biomed Opt. 2017 Jul 1;22(7):76013. doi: 10.1117/1.JBO.22.7.076013.

引用本文的文献

1
Noninvasive monitoring of fetal tissue oxygenation level using time-domain NIRS.
J Biomed Opt. 2025 Aug;30(8):087001. doi: 10.1117/1.JBO.30.8.087001. Epub 2025 Aug 23.
2
Direct 3-D printing of complex optical phantoms using dynamic filament mixing.
Sci Rep. 2025 Mar 21;15(1):9705. doi: 10.1038/s41598-025-94390-7.
3
Fabrication of complex optical phantoms using on-the-fly multi-filament mixing 3-D printing.
Res Sq. 2024 Dec 11:rs.3.rs-5500473. doi: 10.21203/rs.3.rs-5500473/v1.
4
Light-guided dynamic phantom to mimic microvasculature for biomedical applications: an exploration for pulse oximeter.
J Biomed Opt. 2024 Jun;29(Suppl 3):S33312. doi: 10.1117/1.JBO.29.S3.S33312. Epub 2024 Dec 18.
5
Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.
Biomed Opt Express. 2024 Oct 28;15(11):6561-6572. doi: 10.1364/BOE.533481. eCollection 2024 Nov 1.
6
Tunable dynamical tissue phantom for laser speckle imaging.
Biomed Opt Express. 2024 Jul 18;15(8):4737-4748. doi: 10.1364/BOE.528286. eCollection 2024 Aug 1.
7
Effects of phantom microstructure on their optical properties.
J Biomed Opt. 2024 Sep;29(9):093502. doi: 10.1117/1.JBO.29.9.093502. Epub 2024 May 6.
8
Tissue mimicking materials and finger phantom design for pulse oximetry.
Biomed Opt Express. 2024 Mar 12;15(4):2308-2327. doi: 10.1364/BOE.518967. eCollection 2024 Apr 1.
9
Miniature, multi-dichroic instrument for measuring the concentration of multiple fluorophores.
Biomed Opt Express. 2024 Mar 14;15(4):2377-2391. doi: 10.1364/BOE.516574. eCollection 2024 Apr 1.
10
Hybrid heterogeneous phantoms for biomedical applications: a demonstration to dosimetry validation.
Biomed Opt Express. 2024 Jan 18;15(2):863-874. doi: 10.1364/BOE.514994. eCollection 2024 Feb 1.

本文引用的文献

2
Broadband (550-1350 nm) diffuse optical characterization of thyroid chromophores.
Sci Rep. 2018 Jul 3;8(1):10015. doi: 10.1038/s41598-018-27684-8.
5
Broadband diffuse optical characterization of elastin for biomedical applications.
Biophys Chem. 2017 Oct;229:130-134. doi: 10.1016/j.bpc.2017.07.004. Epub 2017 Jul 14.
6
Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics.
J Biomed Opt. 2017 Jul 1;22(7):76013. doi: 10.1117/1.JBO.22.7.076013.
7
Geometrically complex 3D-printed phantoms for diffuse optical imaging.
Biomed Opt Express. 2017 Feb 23;8(3):1754-1762. doi: 10.1364/BOE.8.001754. eCollection 2017 Mar 1.
8
Towards the use of bioresorbable fibers in time-domain diffuse optics.
J Biophotonics. 2018 Jan;11(1). doi: 10.1002/jbio.201600275. Epub 2017 Jun 21.
9
Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants.
Pediatr Res. 2016 Apr;79(4):621-8. doi: 10.1038/pr.2015.267. Epub 2015 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验