利用成像光电容积脉搏波描记法进行无创血压估计

Fair non-contact blood pressure estimation using imaging photoplethysmography.

作者信息

Fang Hongli, Xiong Jiping, He Linying

机构信息

College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321000, China.

出版信息

Biomed Opt Express. 2024 Mar 5;15(4):2133-2151. doi: 10.1364/BOE.514241. eCollection 2024 Apr 1.

Abstract

Hypertension is typically manifested as a latent symptom that requires detection through specialized equipment. This poses an inconvenience for individuals who need to undergo long-term blood pressure monitoring in their daily lives. Therefore, there is a need for a portable, non-contact method for estimating blood pressure. However, current non-contact blood pressure estimation methods often rely on relatively narrow datasets, lacking a broad range of blood pressure distributions. Additionally, their applicability is confined to controlled experimental environments. This study proposes a non-contact blood pressure estimation method suitable for various life scenarios, encompassing multiple age groups, diverse ethnicities, and individuals with different skin tones. The aim is to enhance the practicality and accuracy of existing non-contact blood pressure estimation methods. The research extracts the imaging photoplethysmogram (IPPG) signal from facial videos and processes the signal through four layers of filtering operations to obtain an IPPG signal reflecting pulse wave variations. A CNN+BiLSTM+GRU network structure is constructed to improve the accuracy of current non-contact blood pressure estimation methods. In comparison to existing approaches, the mean absolute error (MAE) for systolic blood pressure (SBP) and diastolic blood pressure (DBP) is reduced by 13.6% and 16.4%, respectively.

摘要

高血压通常表现为一种潜在症状,需要通过专门设备进行检测。这给日常生活中需要进行长期血压监测的个人带来了不便。因此,需要一种便携式、非接触式的血压估计方法。然而,当前的非接触式血压估计方法往往依赖于相对狭窄的数据集,缺乏广泛的血压分布范围。此外,它们的适用性局限于受控的实验环境。本研究提出了一种适用于各种生活场景的非接触式血压估计方法,涵盖多个年龄组、不同种族以及不同肤色的个体。目的是提高现有非接触式血压估计方法的实用性和准确性。该研究从面部视频中提取成像光电容积脉搏波图(IPPG)信号,并通过四层滤波操作对该信号进行处理,以获得反映脉搏波变化的IPPG信号。构建了一个CNN+BiLSTM+GRU网络结构,以提高当前非接触式血压估计方法的准确性。与现有方法相比,收缩压(SBP)和舒张压(DBP)的平均绝对误差(MAE)分别降低了13.6%和16.4%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a785/11019696/7ab5c85df49f/boe-15-4-2133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索