使用深度学习评估从 PPG 和 rPPG 信号进行无创血压预测。
Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning.
机构信息
Laboratory for Biosignal Processing, Leipzig University of Applied Sciences, 04317 Leipzig, Germany.
Department of Orthopaedics, Trauma and Plastic Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany.
出版信息
Sensors (Basel). 2021 Sep 8;21(18):6022. doi: 10.3390/s21186022.
Exploiting photoplethysmography signals (PPG) for non-invasive blood pressure (BP) measurement is interesting for various reasons. First, PPG can easily be measured using fingerclip sensors. Second, camera based approaches allow to derive remote PPG (rPPG) signals similar to PPG and therefore provide the opportunity for non-invasive measurements of BP. Various methods relying on machine learning techniques have recently been published. Performances are often reported as the mean average error (MAE) on the data which is problematic. This work aims to analyze the PPG- and rPPG based BP prediction error with respect to the underlying data distribution. First, we train established neural network (NN) architectures and derive an appropriate parameterization of input segments drawn from continuous PPG signals. Second, we use this parameterization to train NNs with a larger PPG dataset and carry out a systematic evaluation of the predicted blood pressure. The analysis revealed a strong systematic increase of the prediction error towards less frequent BP values across NN architectures. Moreover, we tested different train/test set split configurations which underpin the importance of a careful subject-aware dataset assignment to prevent overly optimistic results. Third, we use transfer learning to train the NNs for rPPG based BP prediction. The resulting performances are similar to the PPG-only case. Finally, we apply different personalization techniques and retrain our NNs with subject-specific data for both the PPG-only and rPPG case. Whilst the particular technique is less important, personalization reduces the prediction errors significantly.
利用光体积描记信号(PPG)进行非侵入式血压(BP)测量具有许多有趣的原因。首先,PPG 可以很容易地使用指夹传感器进行测量。其次,基于相机的方法可以得出类似于 PPG 的远程 PPG(rPPG)信号,从而为非侵入式血压测量提供了机会。最近已经发表了各种依赖机器学习技术的方法。性能通常以数据上的平均平均误差(MAE)报告,这是有问题的。这项工作旨在分析基于 PPG 和 rPPG 的 BP 预测误差与基础数据分布的关系。首先,我们训练了现有的神经网络(NN)架构,并从连续的 PPG 信号中提取适当的输入段参数化。其次,我们使用该参数化对具有更大 PPG 数据集的 NNs 进行训练,并对预测的血压进行系统评估。分析结果表明,在不同的 NN 架构中,预测误差随着 BP 值的降低而呈系统性增加。此外,我们测试了不同的训练/测试集分割配置,这凸显了在防止过于乐观的结果方面,对数据集进行精心的主体感知分配的重要性。第三,我们使用迁移学习来训练基于 rPPG 的 BP 预测的 NNs。所得性能与仅 PPG 的情况相似。最后,我们应用了不同的个性化技术,并对仅 PPG 和 rPPG 情况的 NNs 进行了基于主题特定数据的重新训练。虽然特定的技术不太重要,但个性化可以显著降低预测误差。