Suppr超能文献

使用多环境仿冒筛选器寻找稳健关联。

Searching for robust associations with a multi-environment knockoff filter.

作者信息

Li S, Sesia M, Romano Y, Candès E, Sabatti C

机构信息

Department of Statistics, Stanford University, Stanford, California 94305, USA.

Department of Data Sciences and Operations, University of Southern California, Los Angeles, California 90089, USA.

出版信息

Biometrika. 2022 Sep;109(3):611-629. doi: 10.1093/biomet/asab055. Epub 2021 Nov 2.

Abstract

This paper develops a method based on model-X knockoffs to find conditional associations that are consistent across environments, controlling the false discovery rate. The motivation for this problem is that large data sets may contain numerous associations that are statistically significant and yet misleading, as they are induced by confounders or sampling imperfections. However, associations replicated under different conditions may be more interesting. In fact, consistency sometimes provably leads to valid causal inferences even if conditional associations do not. While the proposed method is widely applicable, this paper highlights its relevance to genome-wide association studies, in which robustness across populations with diverse ancestries mitigates confounding due to unmeasured variants. The effectiveness of this approach is demonstrated by simulations and applications to the UK Biobank data.

摘要

本文提出了一种基于X模型仿样的方法,用于寻找在不同环境下一致的条件关联,并控制错误发现率。提出这个问题的动机是,大数据集可能包含大量在统计上显著但具有误导性的关联,因为它们是由混杂因素或抽样缺陷引起的。然而,在不同条件下复制的关联可能更有意义。事实上,即使条件关联不能证明因果关系,一致性有时也能证明导致有效的因果推断。虽然所提出的方法具有广泛的适用性,但本文强调了它与全基因组关联研究的相关性,在全基因组关联研究中,不同祖先群体之间的稳健性减轻了由于未测量变异而导致的混杂。通过模拟和对英国生物银行数据的应用,证明了该方法的有效性。

相似文献

6
Knockoff boosted tree for model-free variable selection.无模型变量选择的仿射提升树。
Bioinformatics. 2021 May 17;37(7):976-983. doi: 10.1093/bioinformatics/btaa770.

引用本文的文献

2
Catch me if you can: signal localization with knockoff -values.如果你能做到,就抓住我:利用仿冒值进行信号定位。
J R Stat Soc Series B Stat Methodol. 2024 Jun 14;87(1):56-73. doi: 10.1093/jrsssb/qkae042. eCollection 2025 Feb.
5
6
Interpretable machine learning for genomics.基因组学可解释的机器学习。
Hum Genet. 2022 Sep;141(9):1499-1513. doi: 10.1007/s00439-021-02387-9. Epub 2021 Oct 20.

本文引用的文献

1
Filtering the rejection set while preserving false discovery rate control.在保持错误发现率控制的同时过滤拒绝集。
J Am Stat Assoc. 2023;118(541):165-176. doi: 10.1080/01621459.2021.1920958. Epub 2021 Jun 1.
3
Interpretable Classification of Bacterial Raman Spectra With Knockoff Wavelets.基于 Knockoff 子波的细菌拉曼光谱可解释分类
IEEE J Biomed Health Inform. 2022 Feb;26(2):740-748. doi: 10.1109/JBHI.2021.3094873. Epub 2022 Feb 4.
4
IPAD: Stable Interpretable Forecasting with Knockoffs Inference.IPAD:基于仿冒品推断的稳定可解释预测
J Am Stat Assoc. 2020;115(532):1822-1834. doi: 10.1080/01621459.2019.1654878. Epub 2019 Sep 17.
5
Causal inference in genetic trio studies.遗传三体型研究中的因果推断。
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24117-24126. doi: 10.1073/pnas.2007743117. Epub 2020 Sep 18.
6
Causality matters in medical imaging.医学影像学中因果关系很重要。
Nat Commun. 2020 Jul 22;11(1):3673. doi: 10.1038/s41467-020-17478-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验