Suppr超能文献

个体水平模拟模型中用于事件发生时间的快速非参数抽样(NPS)方法。

A Fast Nonparametric Sampling (NPS) Method for Time-to-Event in Individual-Level Simulation Models.

作者信息

Garibay-Treviño David U, Jalal Hawre, Alarid-Escudero Fernando

机构信息

University of Ottawa, Ottawa, ON, CA.

Department of Health Policy, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

medRxiv. 2024 Oct 21:2024.04.05.24305356. doi: 10.1101/2024.04.05.24305356.

Abstract

PURPOSE

Individual-level simulation models often require sampling times to events, however efficient parametric distributions for many processes may often not exist. For example, time to death from life tables cannot be accurately sampled from existing parametric distributions. We propose an efficient nonparametric method to sample times to events that does not require any parametric assumption on the hazards.

METHODS

We developed a nonparametric sampling (NPS) approach that simultaneously draws multiple time-to-event samples from a categorical distribution. This approach can be applied to univariate and multivariate processes. We discretize the entire period into equal-length time intervals and then derived the interval-specific probabilities. The times to events can then be used directly in individual-level simulation models. We compared the accuracy of our approach in sampling time-to-events from common parametric distributions, including exponential, gamma, and Gompertz. In addition, we evaluated the method's performance in sampling age to death from US life tables and sampling times to events from parametric baseline hazards with time-dependent covariates.

RESULTS

The NPS method estimated similar expected times to events from 1 million draws for the three parametric distributions, 100,000 draws for the homogenous cohort, 200,000 draws from the heterogeneous cohort, and 1 million draws for the parametric distributions with time-varying covariates, all in less than a second.

CONCLUSION

Our method produces accurate and computationally efficient samples for time-to-events from hazards without requiring parametric assumptions.

摘要

目的

个体水平的模拟模型通常需要对事件的发生时间进行抽样,然而许多过程可能不存在有效的参数分布。例如,生命表中的死亡时间无法从现有的参数分布中准确抽样。我们提出了一种有效的非参数方法来对事件发生时间进行抽样,该方法不需要对风险做任何参数假设。

方法

我们开发了一种非参数抽样(NPS)方法,该方法能从分类分布中同时抽取多个事件发生时间样本。此方法可应用于单变量和多变量过程。我们将整个时间段离散化为等长的时间间隔,然后推导特定间隔的概率。事件发生时间随后可直接用于个体水平的模拟模型。我们比较了我们的方法从常见参数分布(包括指数分布、伽马分布和冈珀茨分布)中抽样事件发生时间的准确性。此外,我们评估了该方法在从美国生命表中抽样死亡年龄以及从具有随时间变化协变量的参数基线风险中抽样事件发生时间方面的性能。

结果

对于三种参数分布,NPS方法从100万次抽样中估计出的事件发生预期时间类似;对于同质队列,从10万次抽样中估计出的事件发生预期时间类似;对于异质队列,从20万次抽样中估计出的事件发生预期时间类似;对于具有随时间变化协变量的参数分布,从100万次抽样中估计出的事件发生预期时间类似,所有这些估计均在不到一秒的时间内完成。

结论

我们的方法在不需要参数假设的情况下,能为从风险中抽样事件发生时间生成准确且计算高效的样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97da/11528478/53bb00e3f16f/nihpp-2024.04.05.24305356v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验