Suppr超能文献

生成生存时间以模拟具有时变协变量的 Cox 比例风险模型。

Generating survival times to simulate Cox proportional hazards models with time-varying covariates.

机构信息

Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.

出版信息

Stat Med. 2012 Dec 20;31(29):3946-58. doi: 10.1002/sim.5452. Epub 2012 Jul 4.

Abstract

Simulations and Monte Carlo methods serve an important role in modern statistical research. They allow for an examination of the performance of statistical procedures in settings in which analytic and mathematical derivations may not be feasible. A key element in any statistical simulation is the existence of an appropriate data-generating process: one must be able to simulate data from a specified statistical model. We describe data-generating processes for the Cox proportional hazards model with time-varying covariates when event times follow an exponential, Weibull, or Gompertz distribution. We consider three types of time-varying covariates: first, a dichotomous time-varying covariate that can change at most once from untreated to treated (e.g., organ transplant); second, a continuous time-varying covariate such as cumulative exposure at a constant dose to radiation or to a pharmaceutical agent used for a chronic condition; third, a dichotomous time-varying covariate with a subject being able to move repeatedly between treatment states (e.g., current compliance or use of a medication). In each setting, we derive closed-form expressions that allow one to simulate survival times so that survival times are related to a vector of fixed or time-invariant covariates and to a single time-varying covariate. We illustrate the utility of our closed-form expressions for simulating event times by using Monte Carlo simulations to estimate the statistical power to detect as statistically significant the effect of different types of binary time-varying covariates. This is compared with the statistical power to detect as statistically significant a binary time-invariant covariate.

摘要

模拟和蒙特卡罗方法在现代统计研究中起着重要的作用。它们允许在分析和数学推导可能不可行的情况下,检查统计程序的性能。任何统计模拟的关键要素是存在适当的数据生成过程:必须能够从指定的统计模型中模拟数据。我们描述了具有时变协变量的 Cox 比例风险模型的生成数据过程,当事件时间遵循指数、Weibull 或 Gompertz 分布时。我们考虑了三种类型的时变协变量:首先,一个二分类的时变协变量,最多只能从未处理状态变为处理状态(例如器官移植);其次,一个连续的时变协变量,例如在恒定剂量下接受辐射或用于慢性疾病的药物的累积暴露;第三,一个二分类的时变协变量,其中个体能够在治疗状态之间反复移动(例如当前的依从性或药物的使用)。在每种情况下,我们推导出封闭形式的表达式,允许模拟生存时间,以便生存时间与固定或时不变的协变量向量以及单个时变协变量相关。我们通过使用蒙特卡罗模拟来估计检测不同类型的二分类时变协变量的统计学显著性效果的统计功效,来说明我们的闭式表达式在模拟事件时间方面的实用性。这与检测统计学显著的二分类时不变协变量的统计功效进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d2f/3546387/b274b8ff030d/sim0031-3946-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验