Michigan State University, East Lansing, Michigan, USA.
Br J Math Stat Psychol. 2024 Nov;77(3):634-650. doi: 10.1111/bmsp.12342. Epub 2024 Apr 17.
Recent years have seen a growing interest in the development of person-fit statistics for tests with polytomous items. Some of the most popular person-fit statistics for such tests belong to the class of standardized person-fit statistics, , that is assumed to have a standard normal null distribution. However, this distribution only holds when (a) the true ability parameter is known and (b) an infinite number of items are available. In practice, both conditions are violated, and the quality of person-fit results is expected to deteriorate. In this paper, we propose three new corrections for that simultaneously account for the use of an estimated ability parameter and the use of a finite number of items. The three new corrections are direct extensions of those that were developed by Gorney et al. (Psychometrika, 2024, https://doi.org/10.1007/s11336-024-09960-x) for tests with only dichotomous items. Our simulation study reveals that the three new corrections tend to outperform not only the original statistic but also an existing correction for proposed by Sinharay (Psychometrika, 2016, 81, 992). Therefore, the new corrections appear to be promising tools for assessing person fit in tests with polytomous items.
近年来,人们对开发适合具有多项选择题目的测试的个体拟合统计数据越来越感兴趣。此类测试中一些最受欢迎的个体拟合统计数据属于标准化个体拟合统计数据的类别,其假设具有标准正态零分布。然而,这种分布仅在(a)真实能力参数已知和(b)可用的项目数量无限时成立。在实践中,这两个条件都被违反了,并且预计个体拟合结果的质量会恶化。在本文中,我们提出了三种新的修正项,该修正项同时考虑了估计能力参数的使用和有限数量的项目的使用。这三种新的修正项是由 Gorney 等人(Psychometrika,2024,https://doi.org/10.1007/s11336-024-09960-x)为仅具有二分项目的测试开发的修正项的直接扩展。我们的模拟研究表明,这三种新的修正项不仅通常优于原始统计量,而且优于 Sinharay 提出的用于多项选择题目的现有 修正项(Psychometrika,2016,81,992)。因此,新的修正项似乎是评估多项选择题目的个体拟合的有前途的工具。