Suppr超能文献

关于治疗高血脂症的信息传达给提供者的实用临床试验 (PROMPT-LIPID):一项随机临床试验。

Pragmatic Trial of Messaging to Providers About Treatment of Hyperlipidemia (PROMPT-LIPID): A Randomized Clinical Trial.

机构信息

Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (N.N.S., K.F.F., T.A., F.P.W., N.R.D.).

Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL (L.G.).

出版信息

Circ Cardiovasc Qual Outcomes. 2024 May;17(5):e010335. doi: 10.1161/CIRCOUTCOMES.123.010335. Epub 2024 Apr 18.

Abstract

BACKGROUND

Lipid-lowering therapy (LLT) is underutilized for very high-risk atherosclerotic cardiovascular disease. PROMPT-LIPID (PRagmatic Trial of Messaging to Providers about Treatment of HyperLIPIDemia) sought to determine whether electronic health record (EHR) alerts improve 90-day LLT intensification in patients with very high-risk atherosclerotic cardiovascular disease.

METHODS

PROMPT-LIPID was a pragmatic trial in which cardiovascular and internal medicine clinicians within Yale New Haven Health (New Haven, CT) were cluster-randomized to receive an EHR alert with individualized LLT recommendations or no alert for outpatients with very high-risk atherosclerotic cardiovascular disease and LDL-C (low-density lipoprotein cholesterol), ≥70 mg/dL. The primary outcome was 90-day LLT intensification (change to high-intensity statin and addition of ezetimibe or PCSK9i [proprotein subtilisin/kexin type 9 inhibitors]). Secondary outcomes included LDL-C level, proportion of patients with LDL-C of <70 or < 55 mg/dL, rate of major adverse cardiovascular events, ED visit incidence, and 6-month mortality. Results were analyzed using logistic and linear regression clustered at the provider level.

RESULTS

The no-alert group included 47 clinicians and 1370 patients (median age, 71 years; 50.1% female, median LDL-C, 93 mg/dL); the alert group included 49 clinicians and 1130 patients (median age, 72 years; 47% female, median LDL-C 91, mg/dL). The primary outcome was observed in 14.1% of patients in the alert group as compared with 10.4% in the no-alert group. There were no differences in any secondary outcomes at 6 months. Among 542 patients whose clinicians (n=46) did not dismiss the EHR alert recommendations, LLT intensification was significantly greater (21.2% versus 10.4%, odds ratio, 2.33 [95% CI, 1.48-3.66]).

CONCLUSIONS

With a real-time, targeted, individualized EHR alert as compared with usual care, the proportion of patients with atherosclerotic cardiovascular disease with LLT intensification was numerically higher but not statistically significant. Among clinicians who did not dismiss the alert, there was a > 2-fold increase in LLT intensification. EHR alerts, coupled with strategies to reduce clinician dismissal, may help address persistent gaps in LDL-C management.

REGISTRATION

URL: https://www.clinicaltrials.gov; Unique identifier: NCT04394715, https://www.clinicaltrials.gov/ct2/show/study/NCT04394715.

摘要

背景

降脂治疗(LLT)在极高危动脉粥样硬化性心血管疾病中的应用不足。PROMPT-LIPID(关于治疗高脂蛋白血症的提供者信息提示的实用试验)旨在确定电子健康记录(EHR)提示是否能提高极高危动脉粥样硬化性心血管疾病患者的 90 天 LLT 强化治疗。

方法

PROMPT-LIPID 是一项实用试验,其中耶鲁纽黑文健康中心(纽黑文,CT)的心血管和内科临床医生被整群随机分为接受 EHR 提示和个体化 LLT 建议的组或不接受提示的组,用于治疗极高危动脉粥样硬化性心血管疾病和 LDL-C(低密度脂蛋白胆固醇)、≥70mg/dL 的门诊患者。主要结局是 90 天 LLT 强化(改变为高强度他汀类药物,加用依折麦布或 PCSK9i[前蛋白转化酶枯草溶菌素 9 抑制剂])。次要结局包括 LDL-C 水平、LDL-C<70 或<55mg/dL 的患者比例、主要不良心血管事件发生率、急诊就诊发生率和 6 个月死亡率。结果采用逻辑和线性回归进行分析,按提供者水平进行聚类。

结果

无提示组包括 47 名临床医生和 1370 名患者(中位年龄 71 岁;50.1%为女性,中位 LDL-C93mg/dL);提示组包括 49 名临床医生和 1130 名患者(中位年龄 72 岁;47%为女性,中位 LDL-C91mg/dL)。提示组中 14.1%的患者出现主要结局,而无提示组中为 10.4%。6 个月时无任何次要结局的差异。在 542 名临床医生(n=46)未拒绝 EHR 提示建议的患者中,LLT 强化治疗显著更高(21.2%与 10.4%,比值比 2.33[95%CI,1.48-3.66])。

结论

与常规护理相比,实时、有针对性、个体化的 EHR 提示可使动脉粥样硬化性心血管疾病患者接受 LLT 强化治疗的比例略有增加,但无统计学意义。在未拒绝提示的临床医生中,LLT 强化治疗增加了两倍多。EHR 提示与减少临床医生拒绝的策略相结合,可能有助于解决 LDL-C 管理方面的持续差距。

注册

网址:https://www.clinicaltrials.gov;唯一标识符:NCT04394715,https://www.clinicaltrials.gov/ct2/show/study/NCT04394715。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验