Suppr超能文献

一种用于声子的软钳位拓扑波导。

A soft-clamped topological waveguide for phonons.

作者信息

Xi Xiang, Chernobrovkin Ilia, Košata Jan, Kristensen Mads B, Langman Eric, Sørensen Anders S, Zilberberg Oded, Schliesser Albert

机构信息

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

Center for Hybrid Quantum Networks, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

出版信息

Nature. 2025 Jun;642(8069):947-953. doi: 10.1038/s41586-025-09092-x. Epub 2025 Jun 4.

Abstract

Topological insulators were originally discovered for electron waves in condensed-matter systems. Recently, this concept has been transferred to bosonic systems such as photons and phonons, which propagate in materials patterned with artificial lattices that emulate spin-Hall physics. This work has been motivated, in part, by the prospect of topologically protected transport along edge channels in on-chip circuits. In principle, topology protects propagation against backscattering, but not against loss, which has remained limited to the dB cm level for phononic waveguides, whether topological or not. Here we combine advanced dissipation engineering-in particular, the recently introduced method of soft clamping-with the concept of valley-Hall topological insulators for phonons. This enables on-chip phononic waveguides with propagation losses due to dissipation of 3 dB km at room temperature, orders of magnitude below any previous chip-scale devices. The low losses also allow us to accurately quantify backscattering protection in topological phononic waveguides, using high-resolution ultrasound spectroscopy. We infer that phonons follow a sharp, 120° bend with a 99.99% probability instead of being scattered back, and less than one phonon in a million is lost. Our work will inspire new research directions on ultralow-loss phononic waveguides and will provide a clean bosonic system for investigating topological protection and non-Hermitian topological physics.

摘要

拓扑绝缘体最初是在凝聚态物质系统中针对电子波发现的。最近,这一概念已被应用于诸如光子和声子等玻色子系统,它们在模仿自旋霍尔物理的人工晶格图案化材料中传播。这项工作部分是受片上电路中沿边缘通道进行拓扑保护传输前景的推动。原则上,拓扑结构可保护传播免受背散射影响,但不能防止损耗,对于声子波导,无论是否为拓扑结构,损耗一直局限于分贝·厘米级别。在此,我们将先进的耗散工程——特别是最近引入的软夹持方法——与声子的谷霍尔拓扑绝缘体概念相结合。这使得片上声子波导在室温下由于耗散导致的传播损耗为3分贝/千米,比之前任何芯片级器件低几个数量级。低损耗还使我们能够利用高分辨率超声光谱准确量化拓扑声子波导中的背散射保护。我们推断,声子以99.99%的概率沿着120°的急转弯传播,而不是被散射回来,并且每百万个声子中损失不到一个。我们的工作将激发关于超低损耗声子波导的新研究方向,并将为研究拓扑保护和非厄米拓扑物理提供一个纯净的玻色子系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验