Suppr超能文献

基于深度学习的容积旋转调强放疗全骨髓照射野几何形状优化。

Deep learning-based optimization of field geometry for total marrow irradiation delivered with volumetric modulated arc therapy.

机构信息

Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.

Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.

出版信息

Med Phys. 2024 Jun;51(6):4402-4412. doi: 10.1002/mp.17089. Epub 2024 Apr 18.

Abstract

BACKGROUND

Total marrow (lymphoid) irradiation (TMI/TMLI) is a radiotherapy treatment used to selectively target the bone marrow and lymph nodes in conditioning regimens for allogeneic hematopoietic stem cell transplantation. A complex field geometry is needed to cover the large planning target volume (PTV) of TMI/TMLI with volumetric modulated arc therapy (VMAT). Five isocenters and ten overlapping fields are needed for the upper body, while, for patients with large anatomical conformation, two specific isocenters are placed on the arms. The creation of a field geometry is clinically challenging and is performed by a medical physicist (MP) specialized in TMI/TMLI.

PURPOSE

To develop convolutional neural networks (CNNs) for automatically generating the field geometry of TMI/TMLI.

METHODS

The dataset comprised 117 patients treated with TMI/TMLI between 2011 and 2023 at our Institute. The CNN input image consisted of three channels, obtained by projecting along the sagittal plane: (1) average CT pixel intensity within the PTV; (2) PTV mask; (3) brain, lungs, liver, bowel, and bladder masks. This "averaged" frontal view combined the information analyzed by the MP when setting the field geometry in the treatment planning system (TPS). Two CNNs were trained to predict the isocenters coordinates and jaws apertures for patients with (CNN-1) and without (CNN-2) isocenters on the arms. Local optimization methods were used to refine the models output based on the anatomy of the patient. Model evaluation was performed on a test set of 15 patients in two ways: (1) by computing the root mean squared error (RMSE) between the CNN output and ground truth; (2) with a qualitative assessment of manual and generated field geometries-scale: 1 = not adequate, 4 = adequate-carried out in blind mode by three MPs with different expertise in TMI/TMLI. The Wilcoxon signed-rank test was used to evaluate the independence of the given scores between manual and generated configurations (p < 0.05 significant).

RESULTS

The average and standard deviation values of RMSE for CNN-1 and CNN-2 before/after local optimization were 15 ± 2/13 ± 3 mm and 16 ± 2/18 ± 4 mm, respectively. The CNNs were integrated into a planning automation software for TMI/TMLI such that the MPs could analyze in detail the proposed field geometries directly in the TPS. The selection of the CNN model to create the field geometry was based on the PTV width to approximate the decision process of an experienced MP and provide a single option of field configuration. We found no significant differences between the manual and generated field geometries for any MP, with median values of 4 versus 4 (p = 0.92), 3 versus 3 (p = 0.78), 4 versus 3 (p = 0.48), respectively. Starting from October 2023, the generated field geometry has been introduced in our clinical practice for prospective patients.

CONCLUSIONS

The generated field geometries were clinically acceptable and adequate, even for an MP with high level of expertise in TMI/TMLI. Incorporating the knowledge of the MPs into the development cycle was crucial for optimizing the models, especially in this scenario with limited data.

摘要

背景

全骨髓(淋巴)照射(TMI/TMLI)是一种放射治疗方法,用于在异基因造血干细胞移植的预处理方案中选择性地靶向骨髓和淋巴结。为了用容积调强弧形治疗(VMAT)覆盖 TMI/TMLI 的大计划靶区(PTV),需要复杂的场几何形状。上半身需要 5 个等中心点和 10 个重叠野,而对于具有大解剖结构的患者,则在手臂上放置 2 个特定等中心点。场几何形状的创建在临床上具有挑战性,由专门从事 TMI/TMLI 的医学物理学家(MP)完成。

目的

开发卷积神经网络(CNN)来自动生成 TMI/TMLI 的场几何形状。

方法

该数据集包括 2011 年至 2023 年在我们研究所接受 TMI/TMLI 治疗的 117 名患者。CNN 的输入图像由三个通道组成,通过矢状面投影获得:(1)PTV 内平均 CT 像素强度;(2)PTV 掩模;(3)脑、肺、肝、肠和膀胱掩模。这个“平均”的前视图结合了 MP 在治疗计划系统(TPS)中设置场几何形状时分析的信息。训练了两个 CNN 来预测有(CNN-1)和没有(CNN-2)手臂等中心点的患者的等中心点坐标和准直器开口。使用局部优化方法根据患者的解剖结构对模型输出进行细化。使用两种方法在 15 名患者的测试集中评估模型:(1)计算 CNN 输出与真实值之间的均方根误差(RMSE);(2)由三名在 TMI/TMLI 方面具有不同专业知识的 MP 进行盲法定性评估-评分:1=不足,4=足够。使用 Wilcoxon 符号秩检验评估手动和生成场几何形状之间给定分数的独立性(p<0.05 有意义)。

结果

CNN-1 和 CNN-2 在局部优化前后的 RMSE 的平均值和标准差分别为 15±2/13±3mm 和 16±2/18±4mm。将 CNN 集成到 TMI/TMLI 的规划自动化软件中,以便 MPs 可以直接在 TPS 中详细分析建议的场几何形状。选择 CNN 模型来创建场几何形状是基于 PTV 宽度,以近似有经验的 MP 的决策过程,并提供单一的场配置选项。我们发现,对于任何一名 MP,手动和生成的场几何形状之间没有显著差异,中位数分别为 4 对 4(p=0.92)、3 对 3(p=0.78)、4 对 3(p=0.48)。自 2023 年 10 月起,生成的场几何形状已在我们的前瞻性患者临床实践中引入。

结论

生成的场几何形状在临床上是可以接受的,即使对于在 TMI/TMLI 方面具有高水平专业知识的 MP 也是如此。将 MPs 的知识纳入开发周期对于优化模型至关重要,尤其是在这种数据有限的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验