Suppr超能文献

运用文本网络分析方法分析足球研究趋势

Analysis of football research trends using text network analysis.

机构信息

London Sport Institute, School of Science and Technology, Middlesex University, London, United Kingdom.

出版信息

PLoS One. 2024 Apr 18;19(4):e0299782. doi: 10.1371/journal.pone.0299782. eCollection 2024.

Abstract

This study was aimed to identify football research trends in various periods. A total of 30,946 football papers were collected from a representative academic database and search engine, the 'Web of Science'. Keyword refinement included filtering nouns, establishing synonyms and thesaurus, and excluding conjunctions, and the Cyram's Netminer 4.0 software was used for network analysis. A centrality analysis was conducted by extracting the words corresponding to the top 2% of the main research topics to obtain the degree and eigenvector centralities. The most frequently mentioned research keywords were injury, performance, and club. Keyword performance showed the highest degree centrality (0.294) and keyword world and cup showed the highest eigenvector centrality (0.710). The keyword with the highest eigenvector degree changed from injury in the 1990s and world in the 2000s to cup since the 2010s. Although various studies on football injuries have been conducted, research on the sport itself has recently been conducted. This study provides fundamental information on football trends from research published over the past 30 years.

摘要

本研究旨在识别不同时期的足球研究趋势。从一个具有代表性的学术数据库和搜索引擎“Web of Science”中收集了 30946 篇足球论文。关键词细化包括过滤名词、建立同义词和词库以及排除连词,使用 Cyram 的 Netminer 4.0 软件进行网络分析。通过提取主研究主题中前 2%的对应词进行中心度分析,获得度和特征向量中心度。出现频率最高的研究关键词是损伤、表现和俱乐部。关键词表现的度中心度最高(0.294),关键词世界和杯的特征向量中心度最高(0.710)。特征向量度最高的关键词从 20 世纪 90 年代的损伤、2000 年代的世界变成了 21 世纪 10 年代的杯。尽管已经对足球损伤进行了各种研究,但最近对体育运动本身进行了研究。本研究提供了过去 30 年发表的足球研究趋势的基本信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c1/11025783/febf2e9f6178/pone.0299782.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验