Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
Leiden Institute of Advanced Computer Sciences (LIACS), Leiden University, Leiden, The Netherlands.
Eur J Sport Sci. 2021 Apr;21(4):481-496. doi: 10.1080/17461391.2020.1747552. Epub 2020 Apr 16.
In professional soccer, increasing amounts of data are collected that harness great potential when it comes to analysing tactical behaviour. Unlocking this potential is difficult as big data challenges the data management and analytics methods commonly employed in sports. By joining forces with computer science, solutions to these challenges could be achieved, helping sports science to find new insights, as is happening in other scientific domains. We aim to bring multiple domains together in the context of analysing tactical behaviour in soccer using position tracking data. A systematic literature search for studies employing position tracking data to study tactical behaviour in soccer was conducted in seven electronic databases, resulting in 2338 identified studies and finally the inclusion of 73 papers. Each domain clearly contributes to the analysis of tactical behaviour, albeit in - sometimes radically - different ways. Accordingly, we present a multidisciplinary framework where each domain's contributions to feature construction, modelling and interpretation can be situated. We discuss a set of key challenges concerning the data analytics process, specifically feature construction, spatial and temporal aggregation. Moreover, we discuss how these challenges could be resolved through multidisciplinary collaboration, which is pivotal in unlocking the potential of position tracking data in sports analytics.
在职业足球中,收集到的大量数据在分析战术行为方面具有巨大的潜力。但大数据的挑战使得体育界常用的数据管理和分析方法难以发挥这些潜力。通过与计算机科学合作,可以解决这些挑战,帮助体育科学在其他科学领域中寻找新的见解。我们的目标是使用位置跟踪数据,在分析足球战术行为的背景下,将多个领域结合在一起。我们在七个电子数据库中对使用位置跟踪数据研究足球战术行为的研究进行了系统的文献检索,共确定了 2338 项研究,最终纳入了 73 篇论文。每个领域都对战术行为的分析做出了贡献,尽管有时是以截然不同的方式。因此,我们提出了一个多学科框架,可以在其中定位每个领域在特征构建、建模和解释方面的贡献。我们讨论了一组与数据分析过程相关的关键挑战,特别是特征构建、空间和时间聚合。此外,我们还讨论了如何通过多学科合作来解决这些挑战,这对于挖掘体育分析中位置跟踪数据的潜力至关重要。