Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain.
Biofisika Institute, CSIC-UPV/EHU, Leioa 48940, Spain.
Biomed Pharmacother. 2024 May;174:116602. doi: 10.1016/j.biopha.2024.116602. Epub 2024 Apr 17.
The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole derivatives 1-3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole framework and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET biosensor for monitoring Ca-dependent CaM-ligands interactions has been developed and used for the in vitro assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds experimentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in the drug discovery process of calmodulin inhibitors.
开发用于治疗钙调蛋白相关心血管或神经退行性疾病的新分子是一个有趣的目标。在这项工作中,我们引入了一种具有四个主要步骤的新策略:(1)目标分子的化学合成,(2)Förster 共振能量转移(FRET)生物传感器的开发和新衍生物的体外生物测定,(3)化学信息学模型的开发和体内活性预测,以及(4)对接研究。该策略通过案例研究进行说明。首先,通过涉及构建 4-溴利鲁唑骨架及其通过钯催化或有机锂化学进一步官能化的策略,合成了一系列 4-取代的利鲁唑衍生物 1-3。接下来,开发了一种用于监测 Ca 依赖性 CaM-配体相互作用的 FRET 生物传感器,并用于利鲁唑衍生物的体外测定。特别是,观察到 4-甲氧基苯基利鲁唑 2b 的最佳抑制作用(80%)。此外,我们训练和验证了一种新的网络不变、信息融合、微扰理论和机器学习(NIFPTML)模型,用于预测不同脑区体内生物活性参数的概率分布。接下来,我们使用该模型预测了在体外进行实验研究的化合物的体内活性。最后,对利鲁唑及其衍生物进行的对接研究提供了有关它们与靶蛋白(涉及钙调蛋白和 SK4 通道)结合构象的有价值的见解。这种新的组合策略可能有助于降低钙调蛋白抑制剂药物发现过程中的测定成本(动物、材料、时间和人力资源)。