Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Laboratório de Neurofisiolgia e Comportamento, Departamento de Fisiologia e Farmacologia, Instituto Biomédico - Universidade Federal Fluminense, Nitéroi, RJ, Brazil.
Med Biol Eng Comput. 2024 Aug;62(8):2545-2556. doi: 10.1007/s11517-024-03080-5. Epub 2024 Apr 19.
Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86-90% and 77-81%, respectively (p < 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms.
功能磁共振成像(fMRI)研究偏头痛先兆具有挑战性,因为触发病例的患者很少。本研究通过对两名具有独特先兆触发因素的患者进行 fMRI 检查,优化了基于视觉刺激的发作期和间歇期时空激活模式差异的研究方法。两名患者在发作期和间歇期分别进行了单独的 fMRI 检查。采用机器学习时间嵌入方法和基于视觉刺激的时空激活模式,使用高斯过程分类器(GPC)对这些时期进行区分。当仅限制在视觉和枕叶区域时,GPC 的性能得到了提高,患者 A 和 B 的准确率分别约为 86-90%和 77-81%(p<0.01)。该算法能够有效区分视觉刺激和休息期,并识别出出现先兆症状的时间,这从 GPC 模型中的预测概率变化中可以明显看出。这些发现有助于我们理解视觉处理和大脑活动模式在偏头痛先兆中的作用,以及时间嵌入技术在检查先兆现象中的重要性。这一发现对诊断工具和治疗技术具有重要意义,特别是对那些有先兆症状的患者。
Med Biol Eng Comput. 2024-8
J Headache Pain. 2017-12
J Headache Pain. 2017-12
J Headache Pain. 2022-11-23
Neurology. 2020-2-18
Neurology. 2020-1-21