Suppr超能文献

基于超分子水凝胶的绿色湿气发电机,可产生数十毫安的电流,迈向实际应用。

Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications.

作者信息

Yang Su, Zhang Lei, Mao Jianfeng, Guo Jianmiao, Chai Yang, Hao Jianhua, Chen Wei, Tao Xiaoming

机构信息

Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China.

School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, P. R. China.

出版信息

Nat Commun. 2024 Apr 18;15(1):3329. doi: 10.1038/s41467-024-47652-3.

Abstract

Moisture-electric generators (MEGs) has emerged as promising green technology to achieve carbon neutrality in next-generation energy suppliers, especially combined with ecofriendly materials. Hitherto, challenges remain for MEGs as direct power source in practical applications due to low and intermittent electric output. Here we design a green MEG with high direct-current electricity by introducing polyvinyl alcohol-sodium alginate-based supramolecular hydrogel as active material. A single unit can generate an improved power density of ca. 0.11 mW cm, a milliamp-scale short-circuit current density of ca. 1.31 mA cm and an open-circuit voltage of ca. 1.30 V. Such excellent electricity is mainly attributed to enhanced moisture absorption and remained water gradient to initiate ample ions transport within hydrogel by theoretical calculation and experiments. Notably, an enlarged current of ca. 65 mA is achieved by a parallel-integrated MEG bank. The scalable MEGs can directly power many commercial electronics in real-life scenarios, such as charging smart watch, illuminating a household bulb, driving a digital clock for one month. This work provides new insight into constructing green, high-performance and scalable energy source for Internet-of-Things and wearable applications.

摘要

湿气发电机(MEGs)已成为一种有前景的绿色技术,有望在下一代能源供应中实现碳中和,特别是与环保材料相结合时。迄今为止,由于低且间歇性的电力输出,MEGs作为实际应用中的直接电源仍面临挑战。在此,我们通过引入基于聚乙烯醇-海藻酸钠的超分子水凝胶作为活性材料,设计了一种具有高直流电的绿色MEG。单个单元可产生约0.11 mW cm的改进功率密度、约1.31 mA cm的毫安级短路电流密度和约1.30 V的开路电压。通过理论计算和实验,这种优异的电力主要归因于增强的吸湿能力和保持的水梯度,以引发水凝胶内充足的离子传输。值得注意的是,通过并联集成的MEG阵列可实现约65 mA的增大电流。这种可扩展的MEGs能够在现实生活场景中直接为许多商业电子产品供电,例如为智能手表充电、点亮家用灯泡、驱动数字时钟一个月。这项工作为构建用于物联网和可穿戴应用的绿色、高性能和可扩展能源提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8510/11026426/8dfb68a1e027/41467_2024_47652_Fig1_HTML.jpg

相似文献

2
Ionic Hydrogel for Efficient and Scalable Moisture-Electric Generation.
Adv Mater. 2022 May;34(21):e2200693. doi: 10.1002/adma.202200693. Epub 2022 Apr 24.
3
Elastomeric Ionic Hydrogel-Based Flexible Moisture-Electric Generator for Next-Generation Wearable Electronics.
ACS Appl Mater Interfaces. 2024 Sep 4;16(35):46844-46857. doi: 10.1021/acsami.4c11907. Epub 2024 Aug 20.
4
High-performance, breathable and flame-retardant moist-electric generator based on asymmetrical nanofiber membrane assembly.
J Colloid Interface Sci. 2024 Oct;671:205-215. doi: 10.1016/j.jcis.2024.05.147. Epub 2024 May 23.
5
Ionic Hydrogel-Based Moisture Electric Generators for Underwater Electronics.
Adv Sci (Weinh). 2024 Nov;11(43):e2408954. doi: 10.1002/advs.202408954. Epub 2024 Sep 29.
6
Robustly and Intrinsically Stretchable Ionic Gel-Based Moisture-Enabled Power Generator with High Human Body Conformality.
ACS Nano. 2024 May 14;18(19):12096-12104. doi: 10.1021/acsnano.3c08543. Epub 2024 Apr 30.
7
High-Performance, Highly Stretchable, Flexible Moist-Electric Generators via Molecular Engineering of Hydrogels.
Adv Mater. 2023 May;35(20):e2300398. doi: 10.1002/adma.202300398. Epub 2023 Mar 23.
8
Vertical Phase-Engineering MoS Nanosheet-Enhanced Textiles for Efficient Moisture-Based Energy Generation.
ACS Nano. 2024 Jan 9;18(1):492-505. doi: 10.1021/acsnano.3c08132. Epub 2023 Dec 20.
9
Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts.
Mater Horiz. 2021 Aug 1;8(8):2303-2309. doi: 10.1039/d1mh00565k. Epub 2021 Jun 29.
10
Modified Wood Fibers Spontaneously Harvest Electricity from Moisture.
Polymers (Basel). 2024 Jan 17;16(2):260. doi: 10.3390/polym16020260.

引用本文的文献

本文引用的文献

1
Moisture-Enabled Electricity from Hygroscopic Materials: A New Type of Clean Energy.
Adv Mater. 2024 Mar;36(12):e2209661. doi: 10.1002/adma.202209661. Epub 2023 May 10.
4
Hydrovoltaic technology: from mechanism to applications.
Chem Soc Rev. 2022 Jun 20;51(12):4902-4927. doi: 10.1039/d1cs00778e.
5
Moisture adsorption-desorption full cycle power generation.
Nat Commun. 2022 May 9;13(1):2524. doi: 10.1038/s41467-022-30156-3.
6
A Hygroscopic Janus Heterojunction for Continuous Moisture-Triggered Electricity Generators.
ACS Appl Mater Interfaces. 2022 May 4;14(17):19569-19578. doi: 10.1021/acsami.2c02878. Epub 2022 Apr 20.
7
Cellulose, clay and sodium alginate composites for the removal of methylene blue dye: Experimental and DFT studies.
Int J Biol Macromol. 2022 Jun 1;209(Pt A):576-585. doi: 10.1016/j.ijbiomac.2022.04.044. Epub 2022 Apr 9.
8
Ionic Hydrogel for Efficient and Scalable Moisture-Electric Generation.
Adv Mater. 2022 May;34(21):e2200693. doi: 10.1002/adma.202200693. Epub 2022 Apr 24.
9
An Asymmetric Hygroscopic Structure for Moisture-Driven Hygro-Ionic Electricity Generation and Storage.
Adv Mater. 2022 May;34(21):e2201228. doi: 10.1002/adma.202201228. Epub 2022 Apr 27.
10
Deep eutectic solvents boosting solubilization and Se-functionalization of heteropolysaccharide: Multiple hydrogen bonds modulation.
Carbohydr Polym. 2022 May 15;284:119159. doi: 10.1016/j.carbpol.2022.119159. Epub 2022 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验