Suppr超能文献

用于精确预测岩石可钻性指数的混合机器学习方法。

Hybrid machine learning approach for accurate prediction of the drilling rock index.

作者信息

Shahani Niaz Muhammad, Zheng Xigui, Wei Xin, Hongwei Jiang

机构信息

School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.

The State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou, 221116, China.

出版信息

Sci Rep. 2024 Oct 15;14(1):24080. doi: 10.1038/s41598-024-75639-z.

Abstract

The drilling rate index (DRI) of rocks is important for optimizing drilling operations, as it informs the choice of appropriate methods and equipment, ultimately improving the efficiency of rock excavation projects. This study presents a hybrid machine learning approach to predict the DRI of rocks accurately. By integrating grey wolf optimization with support vector machine (GWO-SVM), random forest (GWO-RF), and extreme gradient boosting (GWO-XGBoost) models, the aim was to enhance predictive accuracy. Among these, the GWO-XGBoost model exhibited superior predictive performance, achieving a coefficient of determination (R²) of 0.999, mean absolute error (MAE) of 0.00043, root mean square error (RMSE) of 1.98017, and severity index (SI) of 0.0350 during training. Testing results confirmed its accuracy with R² of 0.999, MAE of 0.00038, RMSE of 1.80790, and SI of 0.0312. Furthermore, the GWO-XGBoost model outperformed the other models in terms of precision, recall, f1-score, and multi-class confusion matrix results for each DRI class. The GWO-RF model also demonstrated high accuracy, ranking second, while the GWO-SVM model showed comparatively lower performance. This research aims to advance rock excavation practices by providing a highly accurate and reliable tool for DRI prediction. The results highlight the significant potential of the GWO-XGBoost model in improving DRI predictions, offering valuable intuitions and practical applications in the field.

摘要

岩石的钻进速度指数(DRI)对于优化钻井作业非常重要,因为它能为选择合适的方法和设备提供依据,最终提高岩石挖掘工程的效率。本研究提出了一种混合机器学习方法来准确预测岩石的DRI。通过将灰狼优化算法与支持向量机(GWO-SVM)、随机森林(GWO-RF)和极端梯度提升(GWO-XGBoost)模型相结合,旨在提高预测精度。其中,GWO-XGBoost模型表现出卓越的预测性能,在训练期间,决定系数(R²)达到0.999,平均绝对误差(MAE)为0.00043,均方根误差(RMSE)为1.98017,严重程度指数(SI)为0.0350。测试结果证实了其准确性,R²为0.999,MAE为0.00038,RMSE为1.80790,SI为0.0312。此外,在每个DRI类别的精度、召回率、F1分数和多类混淆矩阵结果方面,GWO-XGBoost模型优于其他模型。GWO-RF模型也显示出高准确性,排名第二,而GWO-SVM模型表现相对较低。本研究旨在通过提供一种高度准确和可靠的DRI预测工具来推进岩石挖掘实践。结果突出了GWO-XGBoost模型在改进DRI预测方面的巨大潜力,为该领域提供了有价值的见解和实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0025/11473796/875ec307d6b8/41598_2024_75639_Fig9_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验