Suppr超能文献

深层阿拉米语:在金石学中实现机器学习的综合数据范例。

Deep Aramaic: Towards a synthetic data paradigm enabling machine learning in epigraphy.

机构信息

Faculty of Theology and Religious Science, University of Strasbourg, Strasbourg, France.

Faculty of Humanities, History, Ancient History, University of Amsterdam, Amsterdam, Netherlands.

出版信息

PLoS One. 2024 Apr 19;19(4):e0299297. doi: 10.1371/journal.pone.0299297. eCollection 2024.

Abstract

Epigraphy is witnessing a growing integration of artificial intelligence, notably through its subfield of machine learning (ML), especially in tasks like extracting insights from ancient inscriptions. However, scarce labeled data for training ML algorithms severely limits current techniques, especially for ancient scripts like Old Aramaic. Our research pioneers an innovative methodology for generating synthetic training data tailored to Old Aramaic letters. Our pipeline synthesizes photo-realistic Aramaic letter datasets, incorporating textural features, lighting, damage, and augmentations to mimic real-world inscription diversity. Despite minimal real examples, we engineer a dataset of 250 000 training and 25 000 validation images covering the 22 letter classes in the Aramaic alphabet. This comprehensive corpus provides a robust volume of data for training a residual neural network (ResNet) to classify highly degraded Aramaic letters. The ResNet model demonstrates 95% accuracy in classifying real images from the 8th century BCE Hadad statue inscription. Additional experiments validate performance on varying materials and styles, proving effective generalization. Our results validate the model's capabilities in handling diverse real-world scenarios, proving the viability of our synthetic data approach and avoiding the dependence on scarce training data that has constrained epigraphic analysis. Our innovative framework elevates interpretation accuracy on damaged inscriptions, thus enhancing knowledge extraction from these historical resources.

摘要

金石学见证了人工智能的日益融合,特别是通过其机器学习(ML)子领域,特别是在从古代铭文提取见解等任务中。然而,用于训练 ML 算法的稀缺标记数据严重限制了当前技术,特别是对于古文字如古阿拉姆语。我们的研究为生成针对古阿拉姆语字母的合成训练数据开创了一种创新方法。我们的流水线合成了逼真的阿拉姆语字母数据集,其中包括纹理特征、光照、损坏和增强,以模拟真实世界的铭文多样性。尽管实际示例很少,但我们设计了一个包含 250000 个训练图像和 25000 个验证图像的数据集,涵盖了阿拉姆字母表中的 22 个字母类。这个全面的语料库为训练一个用于分类高度退化的阿拉姆字母的残差神经网络(ResNet)提供了大量数据。ResNet 模型在对来自公元前 8 世纪哈达德雕像铭文的真实图像进行分类时表现出 95%的准确率。其他实验验证了在不同材料和风格上的性能,证明了有效的泛化能力。我们的结果验证了该模型在处理各种真实场景下的能力,证明了我们的合成数据方法的可行性,并避免了对稀缺训练数据的依赖,这些数据一直限制着金石学分析。我们的创新框架提高了对受损铭文的解释准确性,从而增强了从这些历史资源中提取知识的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c598/11029639/6a4b7b9f48db/pone.0299297.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验