Suppr超能文献

利用深度学习和计算机断层扫描来确定非结核分枝杆菌肺病患者肺部结节的活动情况。

Utilizing Deep Learning and Computed Tomography to Determine Pulmonary Nodule Activity in Patients With Nontuberculous Mycobacterial-Lung Disease.

机构信息

Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.

Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD.

出版信息

J Thorac Imaging. 2024 May 1;39(3):194-199. doi: 10.1097/RTI.0000000000000745. Epub 2023 Nov 2.

Abstract

PURPOSE

To develop and evaluate a deep convolutional neural network (DCNN) model for the classification of acute and chronic lung nodules from nontuberculous mycobacterial-lung disease (NTM-LD) on computed tomography (CT).

MATERIALS AND METHODS

We collected a data set of 650 nodules (316 acute and 334 chronic) from the CT scans of 110 patients with NTM-LD. The data set was divided into training, validation, and test sets in a ratio of 4:1:1. Bounding boxes were used to crop the 2D CT images down to the area of interest. A DCNN model was built using 11 convolutional layers and trained on these images. The performance of the model was evaluated on the hold-out test set and compared with that of 3 radiologists who independently reviewed the images.

RESULTS

The DCNN model achieved an area under the receiver operating characteristic curve of 0.806 for differentiating acute and chronic NTM-LD nodules, corresponding to sensitivity, specificity, and accuracy of 76%, 68%, and 72%, respectively. The performance of the model was comparable to that of the 3 radiologists, who had area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy of 0.693 to 0.771, 61% to 82%, 59% to 73%, and 60% to 73%, respectively.

CONCLUSIONS

This study demonstrated the feasibility of using a DCNN model for the classification of the activity of NTM-LD nodules on chest CT. The model performance was comparable to that of radiologists. This approach can potentially and efficiently improve the diagnosis and management of NTM-LD.

摘要

目的

开发和评估一种用于区分非结核分枝杆菌肺病(NTM-LD)计算机断层扫描(CT)中急性和慢性肺结节的深度卷积神经网络(DCNN)模型。

材料与方法

我们从 110 例 NTM-LD 患者的 CT 扫描中收集了 650 个结节(316 个急性和 334 个慢性)的数据。数据集按 4:1:1 的比例分为训练集、验证集和测试集。使用边界框将 2D CT 图像裁剪到感兴趣区域。使用 11 个卷积层构建 DCNN 模型,并在这些图像上进行训练。在保留测试集上评估模型的性能,并与 3 位独立查看图像的放射科医生进行比较。

结果

DCNN 模型区分急性和慢性 NTM-LD 结节的受试者工作特征曲线下面积为 0.806,分别对应 76%、68%和 72%的敏感性、特异性和准确性。模型的性能与 3 位放射科医生相当,放射科医生的受试者工作特征曲线下面积、敏感性、特异性和准确性分别为 0.693 至 0.771、61%至 82%、59%至 73%和 60%至 73%。

结论

本研究证明了使用 DCNN 模型对胸部 CT 上 NTM-LD 结节活性进行分类的可行性。模型性能与放射科医生相当。这种方法有可能提高 NTM-LD 的诊断和管理效率。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验