Wagner Lisa-Sofie, Prymak Oleg, Schaller Torsten, Beuck Christine, Loza Kateryna, Niemeyer Felix, Gumbiowski Nina, Kostka Kathrin, Bayer Peter, Heggen Marc, Oliveira Cristiano L P, Epple Matthias
Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany.
Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany.
J Phys Chem B. 2024 May 2;128(17):4266-4281. doi: 10.1021/acs.jpcb.4c01294. Epub 2024 Apr 19.
Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm.
超小金纳米颗粒用含有一个半胱氨酸分子作为锚定基团(通过硫醇 - 金键)和多个丙氨酸残基作为非结合氨基酸的二至七个氨基酸的肽进行功能化修饰。半胱氨酸位于分子中心或末端(C 端)。为作比较,金纳米颗粒也仅用半胱氨酸进行功能化修饰。这些颗粒通过紫外光谱、差示离心沉降(DCS)、高分辨率透射电子显微镜(HRTEM)和小角 X 射线散射(SAXS)进行表征。这证实了均匀的金属核(直径 2 纳米)。通过 H - DOSY NMR 光谱探测流体动力学直径,结果表明随着肽尺寸增加,水合肽层厚度增加(七肽可达 1.4 纳米;肽中每个氨基酸增加 0.20 纳米)。水分散纳米颗粒的 H NMR 光谱显示了肽的完整性以及金属核对肽的影响。值得注意的是,金属表面附近的 NMR 信号非常宽,且在一定距离处变得越来越窄。特别是,丙氨酸的甲基可作为 NMR 光谱分辨率的探针。使用定量 H NMR 光谱确定每个纳米颗粒上肽配体的数量。它随着肽长度增加而减少,从二肽的约 100 个降至七肽的约 12 个,导致分子占位从约 0.1 纳米增加到 1.1 纳米。