Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
School of Humanities and Law, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
Bioinformatics. 2024 Jan 5;40(5). doi: 10.1093/bioinformatics/btae269.
Protein-protein interaction sites (PPIS) are crucial for deciphering protein action mechanisms and related medical research, which is the key issue in protein action research. Recent studies have shown that graph neural networks have achieved outstanding performance in predicting PPIS. However, these studies often neglect the modeling of information at different scales in the graph and the symmetry of protein molecules within three-dimensional space.
In response to this gap, this article proposes the MEG-PPIS approach, a PPIS prediction method based on multi-scale graph information and E(n) equivariant graph neural network (EGNN). There are two channels in MEG-PPIS: the original graph and the subgraph obtained by graph pooling. The model can iteratively update the features of the original graph and subgraph through the weight-sharing EGNN. Subsequently, the max-pooling operation aggregates the updated features of the original graph and subgraph. Ultimately, the model feeds node features into the prediction layer to obtain prediction results. Comparative assessments against other methods on benchmark datasets reveal that MEG-PPIS achieves optimal performance across all evaluation metrics and gets the fastest runtime. Furthermore, specific case studies demonstrate that our method can predict more true positive and true negative sites than the current best method, proving that our model achieves better performance in the PPIS prediction task.
The data and code are available at https://github.com/dhz234/MEG-PPIS.git.
蛋白质-蛋白质相互作用位点 (PPIS) 对于破译蛋白质作用机制和相关医学研究至关重要,这是蛋白质作用研究的关键问题。最近的研究表明,图神经网络在预测 PPIS 方面取得了优异的性能。然而,这些研究往往忽略了图中不同尺度信息的建模和三维空间中蛋白质分子的对称性。
针对这一差距,本文提出了基于多尺度图信息和 E(n) 等变图神经网络 (EGNN) 的 PPIS 预测方法 MEG-PPIS。MEG-PPIS 有两个通道:原始图和通过图池化得到的子图。该模型可以通过共享权重的 EGNN 迭代更新原始图和子图的特征。随后,最大池化操作聚合原始图和子图的更新特征。最终,模型将节点特征输入到预测层以获得预测结果。在基准数据集上与其他方法的比较评估表明,MEG-PPIS 在所有评估指标上都达到了最佳性能,并且运行时间最快。此外,具体案例研究表明,与当前最佳方法相比,我们的方法可以预测更多的真阳性和真阴性位点,证明我们的模型在 PPIS 预测任务中表现更好。
数据和代码可在 https://github.com/dhz234/MEG-PPIS.git 上获得。