Lin Nan, Zheng Mengxuan, Li Lian, Hu Peng, Gao Weifang, Sun Heyang, Xu Chang, Yuan Gonglin, Liang Zi, Dong Yisu, He Haibo, Cui Liying, Lu Qiang
Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China.
NetEase Media Technology Co., Ltd, Beijing, 100084, China.
Sci Data. 2025 Feb 7;12(1):229. doi: 10.1038/s41597-025-04572-1.
Interictal epileptiform discharge (IED) and its spatial distribution are critical for the diagnosis, classification, and treatment of epilepsy. Existing publicly available datasets suffer from limitations such as insufficient data amount and lack of spatial distribution information. In this paper, we present a comprehensive EEG dataset containing annotated interictal epileptic data from 84 patients, each contributing 20 minutes of continuous raw EEG recordings, totaling 28 hours. IEDs and states of consciousness (wake/sleep) were meticulously annotated by at least three EEG experts. The IEDs were categorized into five types based on occurrence regions: generalized, frontal, temporal, occipital, and centro-parietal. The dataset includes 2,516 IED epochs and 22,933 non-IED epochs, each 4 seconds long. We developed and validated a VGG-based model for IED detection using this dataset, achieving improved performance with the inclusion of consciousness and/or spatial distribution information. Additionally, our dataset serves as a reliable test set for evaluating and comparing existing IED detection models.
发作间期癫痫样放电(IED)及其空间分布对于癫痫的诊断、分类和治疗至关重要。现有的公开数据集存在数据量不足和缺乏空间分布信息等局限性。在本文中,我们展示了一个全面的脑电图数据集,其中包含来自84名患者的有注释的发作间期癫痫数据,每位患者贡献20分钟的连续原始脑电图记录,总计28小时。至少三名脑电图专家对IED和意识状态(清醒/睡眠)进行了精心注释。根据出现区域,IED被分为五种类型:全身性、额叶、颞叶、枕叶和中央顶叶。该数据集包括2516个IED时段和22933个非IED时段,每个时段时长4秒。我们使用该数据集开发并验证了一种基于VGG的IED检测模型,通过纳入意识和/或空间分布信息提高了性能。此外,我们的数据集可作为评估和比较现有IED检测模型的可靠测试集。