Suppr超能文献

通过预训练的堆叠卷积神经网络嵌入来增强心电图信号分类:一种迁移学习方法。

Enhancing ECG signal classification through pre-trained stacked-CNN embeddings: a transfer learning approach.

机构信息

Department of Computer Science, University of Biskra, BP 145 RP, 07000, Algeria.

出版信息

Biomed Phys Eng Express. 2024 May 9;10(4). doi: 10.1088/2057-1976/ad40b0.

Abstract

Rapid and accurate electrocardiogram (ECG) signal classification is crucial in high-stakes healthcare settings. However, existing computational models often struggle to balance high performance with computational efficiency. This study introduces an innovative computational framework that combines transfer learning with traditional machine learning to optimize ECG classification. We use a pre-trained Stacked Convolutional Neural Network (SCNN) to generate high-dimensional feature embeddings, which are then evaluated by an array of machine learning classifiers. Our models demonstrate exceptional performance, particularly when utilizing embeddings from SCNNs trained on diverse datasets. This underscores the importance of data diversity in improving classifier discrimination. Notably, Multilayer Perceptrons (MLPs) stand out for their ability to balance computational efficiency with strong performance, achieving test F1-scores of 0.94 and 1.00 in multi-class and binary tasks on the CinC2017 dataset, and 0.85 and 0.99 on the CPSC2018 dataset. Our approach consistently outperforms existing methods, setting new benchmarks in ECG classification. The synergy between deep learning-based feature extraction and traditional machine learning through transfer learning offers a robust, efficient, and adaptable strategy for ECG classification, addressing a critical research gap and laying the groundwork for future advancements in this crucial healthcare field.

摘要

快速准确的心电图 (ECG) 信号分类在高风险医疗保健环境中至关重要。然而,现有的计算模型往往难以在性能和计算效率之间取得平衡。本研究引入了一种创新的计算框架,该框架结合了迁移学习和传统机器学习,以优化 ECG 分类。我们使用预训练的堆叠卷积神经网络 (SCNN) 生成高维特征嵌入,然后由一系列机器学习分类器进行评估。我们的模型表现出卓越的性能,特别是在使用来自不同数据集训练的 SCNN 生成的嵌入时。这突出了数据多样性在提高分类器区分能力方面的重要性。值得注意的是,多层感知机 (MLP) 因其能够在计算效率和性能之间取得平衡而脱颖而出,在 CinC2017 数据集上的多类和二类任务中,其测试 F1 分数分别为 0.94 和 1.00,在 CPSC2018 数据集上分别为 0.85 和 0.99。我们的方法始终优于现有的方法,为 ECG 分类设定了新的基准。基于深度学习的特征提取与传统机器学习之间的迁移学习协同作用,为 ECG 分类提供了一种稳健、高效和适应性强的策略,解决了一个关键的研究空白,并为这一至关重要的医疗保健领域的未来发展奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验