Suppr超能文献

精神分裂症多基因风险评分、临床变量和遗传途径作为双相情感障碍 I 型表型特征的预测因子。

Schizophrenia polygenic risk scores, clinical variables and genetic pathways as predictors of phenotypic traits of bipolar I disorder.

机构信息

Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania.

Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK.

出版信息

J Affect Disord. 2024 Jul 1;356:507-518. doi: 10.1016/j.jad.2024.04.066. Epub 2024 Apr 18.

Abstract

AIM

We investigated the predictive value of polygenic risk scores (PRS) derived from the schizophrenia GWAS (Trubetskoy et al., 2022) (SCZ3) for phenotypic traits of bipolar disorder type-I (BP-I) in 1878 BP-I cases and 2751 controls from Romania and UK.

METHODS

We used PRSice-v2.3.3 and PRS-CS for computing SCZ3-PRS for testing the predictive power of SCZ3-PRS alone and in combination with clinical variables for several BP-I subphenotypes and for pathway analysis. Non-linear predictive models were also used.

RESULTS

SCZ3-PRS significantly predicted psychosis, incongruent and congruent psychosis, general age-of-onset (AO) of BP-I, AO-depression, AO-Mania, rapid cycling in univariate regressions. A negative correlation between the number of depressive episodes and psychosis, mainly incongruent and an inverse relationship between increased SCZ3-SNP loading and BP-I-rapid cycling were observed. In random forest models comparing the predictive power of SCZ3-PRS alone and in combination with nine clinical variables, the best predictions were provided by combinations of SCZ3-PRS-CS and clinical variables closely followed by models containing only clinical variables. SCZ3-PRS performed worst. Twenty-two significant pathways underlying psychosis were identified.

LIMITATIONS

The combined RO-UK sample had a certain degree of heterogeneity of the BP-I severity: only the RO sample and partially the UK sample included hospitalized BP-I cases. The hospitalization is an indicator of illness severity. Not all UK subjects had complete subphenotype information.

CONCLUSION

Our study shows that the SCZ3-PRS have a modest clinical value for predicting phenotypic traits of BP-I. For clinical use their best performance is in combination with clinical variables.

摘要

目的

我们调查了来自精神分裂症 GWAS(Trubetskoy 等人,2022 年)(SCZ3)的多基因风险评分(PRS)对罗马尼亚和英国的 1878 例双相情感障碍 I 型(BP-I)病例和 2751 名对照者的 BP-I 表型特征的预测价值。

方法

我们使用 PRSice-v2.3.3 和 PRS-CS 计算 SCZ3-PRS,以测试单独和结合临床变量的 SCZ3-PRS 对几种 BP-I 亚表型和通路分析的预测能力。还使用了非线性预测模型。

结果

在单变量回归中,SCZ3-PRS 显著预测了精神病、不一致和一致精神病、BP-I 的一般发病年龄(AO)、抑郁发作年龄、躁狂发作年龄、快速循环。观察到抑郁发作次数与精神病之间存在负相关,主要是不一致的精神病,以及增加的 SCZ3-SNP 负荷与 BP-I-快速循环之间的反比关系。在比较单独和结合 9 个临床变量的 SCZ3-PRS 预测能力的随机森林模型中,SCZ3-PRS-CS 与临床变量的组合提供了最佳预测,其次是仅包含临床变量的模型。SCZ3-PRS 的表现最差。确定了 22 个与精神病相关的重要途径。

局限性

RO-UK 联合样本的 BP-I 严重程度存在一定程度的异质性:只有 RO 样本和部分 UK 样本包括住院的 BP-I 病例。住院是疾病严重程度的一个指标。并非所有英国受试者都有完整的亚表型信息。

结论

我们的研究表明,SCZ3-PRS 对预测 BP-I 的表型特征具有一定的临床价值。为了临床应用,它们的最佳性能是与临床变量相结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验