Suppr超能文献

使用精神分裂症和双相情感障碍多基因风险评分来识别精神病性障碍。

Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders.

机构信息

Division of Psychiatry,University College London,UK.

Division of Psychiatry,University College LondonandInstitute of Psychiatry, Psychology and Neuroscience at King's College London and South London and Maudsley NHS Foundation Trust,UK.

出版信息

Br J Psychiatry. 2018 Sep;213(3):535-541. doi: 10.1192/bjp.2018.89.

Abstract

BACKGROUND

There is increasing evidence for shared genetic susceptibility between schizophrenia and bipolar disorder. Although genetic variants only convey subtle increases in risk individually, their combination into a polygenic risk score constitutes a strong disease predictor.AimsTo investigate whether schizophrenia and bipolar disorder polygenic risk scores can distinguish people with broadly defined psychosis and their unaffected relatives from controls.

METHOD

Using the latest Psychiatric Genomics Consortium data, we calculated schizophrenia and bipolar disorder polygenic risk scores for 1168 people with psychosis, 552 unaffected relatives and 1472 controls.

RESULTS

Patients with broadly defined psychosis had dramatic increases in schizophrenia and bipolar polygenic risk scores, as did their relatives, albeit to a lesser degree. However, the accuracy of predictive models was modest.

CONCLUSIONS

Although polygenic risk scores are not ready for clinical use, it is hoped that as they are refined they could help towards risk reduction advice and early interventions for psychosis.Declaration of interestR.M.M. has received honoraria for lectures from Janssen, Lundbeck, Lilly, Otsuka and Sunovian.

摘要

背景

越来越多的证据表明精神分裂症和双相情感障碍之间存在共同的遗传易感性。虽然遗传变异单独只能轻微增加风险,但将它们组合成多基因风险评分可以构成一个强有力的疾病预测指标。

目的

调查精神分裂症和双相情感障碍的多基因风险评分是否可以区分广义定义的精神病患者及其未受影响的亲属与对照组。

方法

使用最新的精神疾病基因组学联合会数据,我们为 1168 名精神病患者、552 名未受影响的亲属和 1472 名对照者计算了精神分裂症和双相情感障碍的多基因风险评分。

结果

广义定义的精神病患者的精神分裂症和双相情感障碍多基因风险评分显著增加,其亲属也是如此,尽管程度较轻。然而,预测模型的准确性是适度的。

结论

虽然多基因风险评分还不能用于临床,但希望随着它们的完善,它们可以帮助提供精神病的风险降低建议和早期干预。

利益声明

R.M.M. 因演讲从 Janssen、Lundbeck、Lilly、Otsuka 和 Sunovian 获得了酬金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ccb/6429584/83f9627646b3/S0007125018000892_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验