Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
Department of Radiation Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, People's Republic of China.
Abdom Radiol (NY). 2024 Nov;49(11):3780-3796. doi: 10.1007/s00261-024-04331-7. Epub 2024 May 26.
Developed and validated a deep learning radiomics nomogram using multi-phase contrast-enhanced computed tomography (CECT) images to predict neoadjuvant chemotherapy (NAC) response in locally advanced gastric cancer (LAGC) patients.
This multi-center study retrospectively included 322 patients diagnosed with gastric cancer from January 2013 to June 2023 at two hospitals. Handcrafted radiomics technique and the EfficientNet V2 neural network were applied to arterial, portal venous, and delayed phase CT images to extract two-dimensional handcrafted and deep learning features. A nomogram model was built by integrating the handcrafted signature, the deep learning signature, with clinical features. Discriminative ability was assessed using the receiver operating characteristics (ROC) curve and the precision-recall (P-R) curve. Model fitting was evaluated using calibration curves, and clinical utility was assessed through decision curve analysis (DCA).
The nomogram exhibited excellent performance. The area under the ROC curve (AUC) was 0.848 [95% confidence interval (CI), 0.793-0.893)], 0.802 (95% CI 0.688-0.889), and 0.751 (95% CI 0.652-0.833) for the training, internal validation, and external validation sets, respectively. The AUCs of the P-R curves were 0.838 (95% CI 0.756-0.895), 0.541 (95% CI 0.329-0.740), and 0.556 (95% CI 0.376-0.722) for the corresponding sets. The nomogram outperformed the clinical model and handcrafted signature across all sets (all P < 0.05). The nomogram model demonstrated good calibration and provided greater net benefit within the relevant threshold range compared to other models.
This study created a deep learning nomogram using CECT images and clinical data to predict NAC response in LAGC patients undergoing surgical resection, offering personalized treatment insights.
利用多期增强 CT(CECT)图像开发并验证一种深度学习放射组学列线图,以预测局部晚期胃癌(LAGC)患者新辅助化疗(NAC)的反应。
本多中心研究回顾性纳入了 2013 年 1 月至 2023 年 6 月在两家医院诊断为胃癌的 322 例患者。应用手工提取和 EfficientNet V2 神经网络,从动脉期、门静脉期和延迟期 CT 图像中提取二维手工和深度学习特征。通过整合手工签名、深度学习签名和临床特征,建立列线图模型。使用受试者工作特征(ROC)曲线和精确召回(P-R)曲线评估判别能力。通过校准曲线评估模型拟合情况,通过决策曲线分析(DCA)评估临床效用。
该列线图表现出优异的性能。ROC 曲线下面积(AUC)在训练集、内部验证集和外部验证集分别为 0.848(95%置信区间[CI],0.793-0.893)、0.802(95% CI 0.688-0.889)和 0.751(95% CI 0.652-0.833)。P-R 曲线的 AUC 在相应的数据集分别为 0.838(95% CI 0.756-0.895)、0.541(95% CI 0.329-0.740)和 0.556(95% CI 0.376-0.722)。该列线图在所有数据集均优于临床模型和手工签名(均 P<0.05)。该列线图模型在相关阈值范围内表现出良好的校准度,并提供了比其他模型更大的净收益。
本研究利用 CECT 图像和临床数据构建了深度学习列线图,以预测接受手术切除的 LAGC 患者的 NAC 反应,为患者提供了个性化的治疗见解。