Suppr超能文献

深度学习分析对比增强光谱乳腺摄影术以确定恶性乳腺肿瘤的组织预后因素。

Deep learning analysis of contrast-enhanced spectral mammography to determine histoprognostic factors of malignant breast tumours.

机构信息

Department of Radiology and Nuclear Medicine, Henri Becquerel Cancer Centre, Rouen, France.

Department of Pathology, Henri Becquerel Cancer Centre, Rouen, France.

出版信息

Eur Radiol. 2022 Jul;32(7):4834-4844. doi: 10.1007/s00330-022-08538-4. Epub 2022 Jan 29.

Abstract

OBJECTIVE

To evaluate if a deep learning model can be used to characterise breast cancers on contrast-enhanced spectral mammography (CESM).

METHODS

This retrospective mono-centric study included biopsy-proven invasive cancers with an enhancement on CESM. CESM images include low-energy images (LE) comparable to digital mammography and dual-energy subtracted images (DES) showing tumour angiogenesis. For each lesion, histologic type, tumour grade, estrogen receptor (ER) status, progesterone receptor (PR) status, HER-2 status, Ki-67 proliferation index, and the size of the invasive tumour were retrieved. The deep learning model used was a CheXNet-based model fine-tuned on CESM dataset. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated for the different models: images by images and then by majority voting combining all the incidences for one tumour.

RESULTS

In total, 447 invasive breast cancers detected on CESM with pathological evidence, in 389 patients, which represented 2460 images analysed, were included. Concerning the ER, the deep learning model on the DES images had an AUC of 0.83 with the image-by-image analysis and of 0.85 for the majority voting. For the triple-negative analysis, a high AUC was observable for all models, in particularity for the model on LE images with an AUC of 0.90 for the image-by-image analysis and 0.91 for the majority voting. The AUC for the other histoprognostic factors was lower.

CONCLUSION

Deep learning analysis on CESM has the potential to determine histoprognostic tumours makers, notably estrogen receptor status, and triple-negative receptor status.

KEY POINTS

• A deep learning model developed for chest radiography was adapted by fine-tuning to be used on contrast-enhanced spectral mammography. • The adapted models allowed to determine for invasive breast cancers the status of estrogen receptors and triple-negative receptors. • Such models applied to contrast-enhanced spectral mammography could provide rapid prognostic and predictive information.

摘要

目的

评估深度学习模型是否可用于对对比增强光谱乳腺摄影(CESM)中的乳腺癌进行特征描述。

方法

本回顾性单中心研究纳入了经活检证实的、CESM 增强的浸润性癌。CESM 图像包括与数字乳腺摄影相当的低能图像(LE)和显示肿瘤血管生成的双能减影图像(DES)。对于每一个病灶,均检索组织学类型、肿瘤分级、雌激素受体(ER)状态、孕激素受体(PR)状态、HER-2 状态、Ki-67 增殖指数以及浸润性肿瘤的大小。所使用的深度学习模型是基于 CheXNet 的模型,在 CESM 数据集上进行了微调。计算了不同模型的受试者工作特征(ROC)曲线下面积(AUC):逐幅图像以及通过对同一肿瘤的所有病例进行多数投票的组合。

结果

共纳入 389 例患者的 447 例 CESM 检测到的浸润性乳腺癌,这些患者共有 2460 幅图像进行了分析。关于 ER,DES 图像上的深度学习模型在逐幅图像分析中的 AUC 为 0.83,在多数投票中的 AUC 为 0.85。对于三阴性分析,所有模型的 AUC 都很高,特别是 LE 图像上的模型,其在逐幅图像分析中的 AUC 为 0.90,在多数投票中的 AUC 为 0.91。其他组织预后因素的 AUC 较低。

结论

CESM 的深度学习分析有可能确定组织预后标志物,特别是雌激素受体状态和三阴性受体状态。

关键点

  1. 为胸部 X 射线开发的深度学习模型通过微调被改编,以用于对比增强光谱乳腺摄影。

  2. 适应的模型允许确定浸润性乳腺癌的雌激素受体和三阴性受体状态。

  3. 应用于对比增强光谱乳腺摄影的此类模型可以提供快速的预后和预测信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/847a/8800426/07429893b396/330_2022_8538_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验