Suppr超能文献

PySupercharge:一种通过氨基酸突变使 ABC 转运蛋白细菌分泌所有蛋白质的 Python 算法。

PySupercharge: a python algorithm for enabling ABC transporter bacterial secretion of all proteins through amino acid mutation.

机构信息

Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan, South Korea.

Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.

出版信息

Microb Cell Fact. 2024 Apr 20;23(1):115. doi: 10.1186/s12934-024-02342-z.

Abstract

BACKGROUND

The process of producing proteins in bacterial systems and secreting them through ATP-binding cassette (ABC) transporters is an area that has been actively researched and used due to its high protein production capacity and efficiency. However, some proteins are unable to pass through the ABC transporter after synthesis, a phenomenon we previously determined to be caused by an excessive positive charge in certain regions of their amino acid sequence. If such an excessive charge is removed, the secretion of any protein through ABC transporters becomes possible.

RESULTS

In this study, we introduce 'linear charge density' as the criteria for possibility of protein secretion through ABC transporters and confirm that this criterion can be applied to various non-secretable proteins, such as SARS-CoV-2 spike proteins, botulinum toxin light chain, and human growth factors. Additionally, we develop a new algorithm, PySupercharge, that enables the secretion of proteins containing regions with high linear charge density. It selectively converts positively charged amino acids into negatively charged or neutral amino acids after linear charge density analysis to enable protein secretion through ABC transporters.

CONCLUSIONS

PySupercharge, which also minimizes functional/structural stability loss of the pre-mutation proteins through the use of sequence conservation data, is currently being operated on an accessible web server. We verified the efficacy of PySupercharge-driven protein supercharging by secreting various previously non-secretable proteins commonly used in research, and so suggest this tool for use in future research requiring effective protein production.

摘要

背景

在细菌系统中生产蛋白质并通过 ATP 结合盒(ABC)转运体将其分泌出来的过程是一个备受关注和应用的领域,因为它具有高蛋白质生产能力和效率。然而,有些蛋白质在合成后无法通过 ABC 转运体,我们之前已经确定这种现象是由于其氨基酸序列中某些区域的正电荷过多所致。如果去除这种过多的电荷,任何蛋白质都可以通过 ABC 转运体进行分泌。

结果

在这项研究中,我们引入“线性电荷密度”作为通过 ABC 转运体分泌蛋白质的可能性的标准,并证实该标准可应用于各种不可分泌的蛋白质,如 SARS-CoV-2 刺突蛋白、肉毒杆菌毒素轻链和人生长因子。此外,我们开发了一种新的算法 PySupercharge,它能够使含有高线性电荷密度区域的蛋白质进行分泌。它在进行线性电荷密度分析后,选择性地将带正电荷的氨基酸转化为带负电荷或中性的氨基酸,从而使蛋白质能够通过 ABC 转运体进行分泌。

结论

PySupercharge 还利用序列保守性数据最小化了预突变蛋白的功能/结构稳定性损失,目前正在一个可访问的网络服务器上运行。我们通过分泌各种以前不可分泌的常用研究蛋白,验证了 PySupercharge 驱动的蛋白超荷的功效,因此建议在未来需要有效蛋白质生产的研究中使用该工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5284/11031901/0b2b3e94d145/12934_2024_2342_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验