Suppr超能文献

一种用于MRI脑肿瘤分割的带有变分自编码器和注意力门的两阶段级联模型。

A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation.

作者信息

Lyu Chenggang, Shu Hai

机构信息

Department of Biostatistics, School of Global Public Health, New York University, New York, NY 10003, USA.

出版信息

Brainlesion. 2020 Oct;2020:435-447. doi: 10.1007/978-3-030-72084-1_39. Epub 2021 Mar 27.

Abstract

Automatic MRI brain tumor segmentation is of vital importance for the disease diagnosis, monitoring, and treatment planning. In this paper, we propose a two-stage encoder-decoder based model for brain tumor subregional segmentation. Variational autoencoder regularization is utilized in both stages to prevent the overfitting issue. The second-stage network adopts attention gates and is trained additionally using an expanded dataset formed by the first-stage outputs. On the BraTS 2020 validation dataset, the proposed method achieves the mean Dice score of 0.9041, 0.8350, and 0.7958, and Hausdorff distance (95%) of 4.953 , 6.299, 23.608 for the whole tumor, tumor core, and enhancing tumor, respectively. The corresponding results on the BraTS 2020 testing dataset are 0.8729, 0.8357, and 0.8205 for Dice score, and 11.4288, 19.9690, and 15.6711 for Hausdorff distance. The code is publicly available at https://github.com/shu-hai/two-stage-VAE-Attention-gate-BraTS2020.

摘要

自动磁共振成像脑肿瘤分割对于疾病诊断、监测和治疗规划至关重要。在本文中,我们提出了一种基于两阶段编码器-解码器的脑肿瘤子区域分割模型。在两个阶段都使用变分自编码器正则化来防止过拟合问题。第二阶段网络采用注意力门控,并使用由第一阶段输出形成的扩展数据集进行额外训练。在BraTS 2020验证数据集上,所提出的方法对于整个肿瘤、肿瘤核心和强化肿瘤的平均Dice分数分别为0.9041、0.8350和0.7958,豪斯多夫距离(95%)分别为4.953、6.299和23.

相似文献

5
Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet.使用3D-Znet的多模态立体定向脑肿瘤分割
Bioengineering (Basel). 2023 May 11;10(5):581. doi: 10.3390/bioengineering10050581.
8
Three-Plane-assembled Deep Learning Segmentation of Gliomas.胶质瘤的三平面组装深度学习分割
Radiol Artif Intell. 2020 Mar 11;2(2):e190011. doi: 10.1148/ryai.2020190011.

引用本文的文献

2
Head and Neck Tumor Segmentation Using Pre-RT MRI Scans and Cascaded DualUNet.使用放疗前MRI扫描和级联双U-Net进行头颈部肿瘤分割
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:191-203. doi: 10.1007/978-3-031-83274-1_14. Epub 2025 Mar 3.
7
Overview of Multi-Modal Brain Tumor MR Image Segmentation.多模态脑肿瘤磁共振图像分割概述
Healthcare (Basel). 2021 Aug 16;9(8):1051. doi: 10.3390/healthcare9081051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验