Lyu Chenggang, Shu Hai
Department of Biostatistics, School of Global Public Health, New York University, New York, NY 10003, USA.
Brainlesion. 2020 Oct;2020:435-447. doi: 10.1007/978-3-030-72084-1_39. Epub 2021 Mar 27.
Automatic MRI brain tumor segmentation is of vital importance for the disease diagnosis, monitoring, and treatment planning. In this paper, we propose a two-stage encoder-decoder based model for brain tumor subregional segmentation. Variational autoencoder regularization is utilized in both stages to prevent the overfitting issue. The second-stage network adopts attention gates and is trained additionally using an expanded dataset formed by the first-stage outputs. On the BraTS 2020 validation dataset, the proposed method achieves the mean Dice score of 0.9041, 0.8350, and 0.7958, and Hausdorff distance (95%) of 4.953 , 6.299, 23.608 for the whole tumor, tumor core, and enhancing tumor, respectively. The corresponding results on the BraTS 2020 testing dataset are 0.8729, 0.8357, and 0.8205 for Dice score, and 11.4288, 19.9690, and 15.6711 for Hausdorff distance. The code is publicly available at https://github.com/shu-hai/two-stage-VAE-Attention-gate-BraTS2020.
自动磁共振成像脑肿瘤分割对于疾病诊断、监测和治疗规划至关重要。在本文中,我们提出了一种基于两阶段编码器-解码器的脑肿瘤子区域分割模型。在两个阶段都使用变分自编码器正则化来防止过拟合问题。第二阶段网络采用注意力门控,并使用由第一阶段输出形成的扩展数据集进行额外训练。在BraTS 2020验证数据集上,所提出的方法对于整个肿瘤、肿瘤核心和强化肿瘤的平均Dice分数分别为0.9041、0.8350和0.7958,豪斯多夫距离(95%)分别为4.953、6.299和23.