Suppr超能文献

区分病毒感染和细菌感染:一种基于常规血液检测值的机器学习模型。

Differentiating viral and bacterial infections: A machine learning model based on routine blood test values.

作者信息

Gunčar Gregor, Kukar Matjaž, Smole Tim, Moškon Sašo, Vovko Tomaž, Podnar Simon, Černelč Peter, Brvar Miran, Notar Mateja, Köster Manca, Jelenc Marjeta Tušek, Osterc Žiga, Notar Marko

机构信息

Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland.

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia.

出版信息

Heliyon. 2024 Apr 9;10(8):e29372. doi: 10.1016/j.heliyon.2024.e29372. eCollection 2024 Apr 30.

Abstract

The growing threat of antibiotic resistance necessitates accurate differentiation between bacterial and viral infections for proper antibiotic administration. In this study, a Virus vs. Bacteria machine learning model was developed to distinguish between these infection types using 16 routine blood test results, C-reactive protein concentration (CRP), biological sex, and age. With a dataset of 44,120 cases from a single medical center, the model achieved an accuracy of 82.2 %, a sensitivity of 79.7 %, a specificity of 84.5 %, a Brier score of 0.129, and an area under the ROC curve (AUC) of 0.905, outperforming a CRP-based decision rule. Notably, the machine learning model enhanced accuracy within the CRP range of 10-40 mg/L, a range where CRP alone is less informative. These results highlight the advantage of integrating multiple blood parameters in diagnostics. The "Virus vs. Bacteria" model paves the way for advanced diagnostic tools, leveraging machine learning to optimize infection management.

摘要

抗生素耐药性构成的威胁日益增加,因此有必要准确区分细菌感染和病毒感染,以便正确使用抗生素。在本研究中,开发了一种“病毒与细菌”机器学习模型,利用16项常规血液检测结果、C反应蛋白浓度(CRP)、生物学性别和年龄来区分这些感染类型。该模型使用来自单个医疗中心的44120例病例数据集,准确率达到82.2%,灵敏度为79.7%,特异性为84.5%,布里尔评分0.129,ROC曲线下面积(AUC)为0.905,优于基于CRP的决策规则。值得注意的是,该机器学习模型在CRP为10-40mg/L的范围内提高了准确率,在这个范围内仅靠CRP提供的信息较少。这些结果凸显了在诊断中整合多个血液参数的优势。“病毒与细菌”模型为先进的诊断工具铺平了道路,利用机器学习优化感染管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验