Suppr超能文献

用于通过可穿戴传感器预测阿片类药物给药时刻的药代动力学信息神经网络。

Pharmacokinetics-Informed Neural Network for Predicting Opioid Administration Moments with Wearable Sensors.

作者信息

Gullapalli Bhanu Teja, Carreiro Stephanie, Chapman Brittany P, Garland Eric L, Rahman Tauhidur

机构信息

University of California San Diego.

UMass Chan Medical School.

出版信息

Proc AAAI Conf Artif Intell. 2024 Feb;38(21):22892-22898. doi: 10.1609/aaai.v38i21.30326. Epub 2024 Mar 24.

Abstract

Long-term and high-dose prescription opioid use places individuals at risk for opioid misuse, opioid use disorder (OUD), and overdose. Existing methods for monitoring opioid use and detecting misuse rely on self-reports, which are prone to reporting bias, and toxicology testing, which may be infeasible in outpatient settings. Although wearable technologies for monitoring day-to-day health metrics have gained significant traction in recent years due to their ease of use, flexibility, and advancements in sensor technology, their application within the opioid use space remains underexplored. In the current work, we demonstrate that oral opioid administrations can be detected using physiological signals collected from a wrist sensor. More importantly, we show that models informed by opioid pharmacokinetics increase reliability in predicting the timing of opioid administrations. Forty-two individuals who were prescribed opioids as a part of their medical treatment in-hospital and after discharge were enrolled. Participants wore a wrist sensor throughout the study, while opioid administrations were tracked using electronic medical records and self-reports. We collected 1,983 hours of sensor data containing 187 opioid administrations from the inpatient setting and 927 hours of sensor data containing 40 opioid administrations from the outpatient setting. We demonstrate that a self-supervised pre-trained model, capable of learning the canonical time series of plasma concentration of the drug derived from opioid pharmacokinetics, can reliably detect opioid administration in both settings. Our work suggests the potential of pharmacokinetic-informed, data-driven models to objectively detect opioid use in daily life.

摘要

长期大剂量使用处方阿片类药物会使个体面临阿片类药物滥用、阿片类药物使用障碍(OUD)和过量用药的风险。现有的监测阿片类药物使用和检测滥用情况的方法依赖于自我报告(容易出现报告偏差)和毒理学检测(在门诊环境中可能不可行)。尽管近年来用于监测日常健康指标的可穿戴技术因其易用性、灵活性和传感器技术的进步而获得了显著关注,但其在阿片类药物使用领域的应用仍未得到充分探索。在当前的研究中,我们证明可以使用从腕部传感器收集的生理信号来检测口服阿片类药物的服用情况。更重要的是,我们表明基于阿片类药物药代动力学的模型在预测阿片类药物服用时间方面提高了可靠性。招募了42名在住院期间和出院后接受阿片类药物治疗的个体。在整个研究过程中,参与者佩戴腕部传感器,同时使用电子病历和自我报告来跟踪阿片类药物的服用情况。我们从住院环境中收集了1983小时的传感器数据,其中包含187次阿片类药物服用记录,从门诊环境中收集了927小时的传感器数据,其中包含40次阿片类药物服用记录。我们证明,一个能够学习源自阿片类药物药代动力学的药物血浆浓度标准时间序列的自监督预训练模型,可以在两种环境中可靠地检测阿片类药物的服用情况。我们的研究表明,基于药代动力学的、数据驱动的模型有潜力在日常生活中客观地检测阿片类药物的使用情况。

相似文献

本文引用的文献

8
Automatic Detection of Opioid Intake Using Wearable Biosensor.使用可穿戴生物传感器自动检测阿片类药物摄入量
Int Conf Comput Netw Commun. 2018 Mar;2018:784-788. doi: 10.1109/ICCNC.2018.8390334. Epub 2018 Jun 21.
9
Opioid overdose detection using smartphones.使用智能手机检测阿片类药物过量。
Sci Transl Med. 2019 Jan 9;11(474). doi: 10.1126/scitranslmed.aau8914.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验