Suppr超能文献

一种用于使用可穿戴传感器识别吸烟过程中抽吸动作的卷积神经网络-长短期记忆神经网络。

A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors.

作者信息

Senyurek Volkan Y, Imtiaz Masudul H, Belsare Prajakta, Tiffany Stephen, Sazonov Edward

机构信息

1Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA.

2Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA.

出版信息

Biomed Eng Lett. 2020 Jan 30;10(2):195-203. doi: 10.1007/s13534-020-00147-8. eCollection 2020 May.

Abstract

A detailed assessment of smoking behavior under free-living conditions is a key challenge for health behavior research. A number of methods using wearable sensors and puff topography devices have been developed for smoking and individual puff detection. In this paper, we propose a novel algorithm for automatic detection of puffs in smoking episodes by using a combination of Respiratory Inductance Plethysmography and Inertial Measurement Unit sensors. The detection of puffs was performed by using a deep network containing convolutional and recurrent neural networks. Convolutional neural networks (CNN) were utilized to automate feature learning from raw sensor streams. Long Short Term Memory (LSTM) network layers were utilized to obtain the temporal dynamics of sensor signals and classify sequence of time segmented sensor streams. An evaluation was performed by using a large, challenging dataset containing 467 smoking events from 40 participants under free-living conditions. The proposed approach achieved an F1-score of 78% in leave-one-subject-out cross-validation. The results suggest that CNN-LSTM based neural network architecture sufficiently detect puffing episodes in free-living condition. The proposed model be used as a detection tool for smoking cessation programs and scientific research.

摘要

在自由生活条件下对吸烟行为进行详细评估是健康行为研究面临的一项关键挑战。已经开发出了多种使用可穿戴传感器和抽吸地形设备的方法来检测吸烟行为和单次抽吸。在本文中,我们提出了一种新颖的算法,通过结合呼吸感应体积描记法和惯性测量单元传感器来自动检测吸烟过程中的抽吸。抽吸检测是通过使用一个包含卷积神经网络和循环神经网络的深度网络来进行的。卷积神经网络(CNN)用于从原始传感器数据流中自动进行特征学习。长短期记忆(LSTM)网络层用于获取传感器信号的时间动态,并对时间分段的传感器数据流序列进行分类。使用一个包含40名参与者在自由生活条件下的467次吸烟事件的大型、具有挑战性的数据集进行了评估。所提出的方法在留一法交叉验证中获得了78%的F1分数。结果表明,基于CNN-LSTM的神经网络架构能够充分检测自由生活条件下的抽吸事件。所提出的模型可作为戒烟计划和科学研究的检测工具。

相似文献

2
Electromyogram in Cigarette Smoking Activity Recognition.吸烟活动识别中的肌电图
Signals (Basel). 2021 Mar;2(1):87-97. doi: 10.3390/signals2010008. Epub 2021 Feb 9.

引用本文的文献

本文引用的文献

1
Smoking detection based on regularity analysis of hand to mouth gestures.基于手到嘴部动作规律分析的吸烟检测
Biomed Signal Process Control. 2019 May;51:106-112. doi: 10.1016/j.bspc.2019.01.026. Epub 2019 Feb 22.
5
Recognizing cigarette smoke inhalations using hidden Markov models.使用隐马尔可夫模型识别香烟烟雾吸入情况。
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1242-1245. doi: 10.1109/EMBC.2017.8037056.
6
Using respiratory signals for the recognition of human activities.利用呼吸信号进行人类活动识别。
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:173-176. doi: 10.1109/EMBC.2016.7590668.
7
Global economic cost of smoking-attributable diseases.全球吸烟相关疾病经济负担。
Tob Control. 2018 Jan;27(1):58-64. doi: 10.1136/tobaccocontrol-2016-053305. Epub 2017 Jan 30.
8
Quitting Smoking Among Adults - United States, 2000-2015.成年人戒烟 - 美国,2000-2015 年。
MMWR Morb Mortal Wkly Rep. 2017 Jan 6;65(52):1457-1464. doi: 10.15585/mmwr.mm6552a1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验