Suppr超能文献

通过在监督注射场所使用可穿戴胸部传感器检测高危阿片类药物使用者的药物过量:一项观察性研究方案。

Overdose Detection Among High-Risk Opioid Users Via a Wearable Chest Sensor in a Supervised Injecting Facility: Protocol for an Observational Study.

机构信息

National Addiction Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.

出版信息

JMIR Res Protoc. 2024 Sep 10;13:e57367. doi: 10.2196/57367.

Abstract

BACKGROUND

Opioid overdose is a global health crisis, affecting over 27 million individuals worldwide, with more than 100,000 drug overdose deaths in the United States in 2022-2023. This protocol outlines the development of the PneumoWave chest biosensor, a wearable device being designed to detect respiratory depression in real time through chest motion measurement, intending to enhance early intervention and thereby reduce fatalities.

OBJECTIVE

The study aims to (1) differentiate opioid-induced respiratory depression (OIRD) from nonfatal opioid use patterns to develop and refine an overdose detection algorithm and (2) examine participants' acceptability of the chest biosensor.

METHODS

The study adopts an observational design over a 6-month period. The biosensor, a small device, will be worn by consenting participants during injecting events to capture chest motion data. Safe injecting facilities (SIF) in Melbourne, Victoria (site 1), and Sydney, New South Wales (site 2), which are legally sanctioned spaces where individuals can use preobtained illicit drugs under medical supervision. Each site is anticipated to recruit up to 100 participants who inject opioids and attend the SIF. Participants will wear the biosensor during supervised injecting events at both sites. The biosensor will attempt to capture data on an anticipated 40 adverse drug events. The biosensor's ability to detect OIRD will be compared to the staff-identified events that use standard protocols for managing overdoses. Measurements will include (1) chest wall movement measured by the biosensor, securely streamed to a cloud, and analyzed to refine an overdose detection algorithm and (2) acute events or potential overdose identified by site staff. Acceptability will be measured by a feedback questionnaire as many times as the participant is willing to throughout the study.

RESULTS

As of April 2024, a total of 47 participants have been enrolled and data from 1145 injecting events have already been collected, including 10 overdose events. This consists of 17 females and 30 males with an average age of 45 years. Data analysis is ongoing.

CONCLUSIONS

This protocol establishes a foundation for advancing wearable technology in opioid overdose prevention within SIFs. The study will provide chest wall movement data and associated overdose data that will be used to train an algorithm that allows the biosensor to detect an overdose. The study will contribute crucial insights into OIRD, emphasizing the biosensor's potential step forward in real-time intervention strategies.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/57367.

摘要

背景

阿片类药物过量是一个全球性的健康危机,影响着全球超过 2700 万人,仅 2022-2023 年美国就有超过 1 万人死于药物过量。本方案概述了 PneumoWave 胸部生物传感器的开发,这是一种可穿戴设备,旨在通过胸部运动测量实时检测呼吸抑制,旨在加强早期干预,从而降低死亡率。

目的

本研究旨在(1)区分阿片类药物引起的呼吸抑制(OIRD)与非致命性阿片类药物使用模式,以开发和完善药物过量检测算法,(2)检验参与者对胸部生物传感器的可接受性。

方法

本研究采用为期 6 个月的观察性设计。该生物传感器是一种小型设备,将在同意参加研究的参与者注射药物时佩戴,以采集胸部运动数据。墨尔本(地点 1)和悉尼(地点 2)的安全注射设施(SIF)是合法批准的场所,在医疗监督下,个人可以使用事先获得的非法药物。每个地点预计将招募多达 100 名注射阿片类药物并参加 SIF 的参与者。参与者将在两个地点的监督注射事件中佩戴生物传感器。生物传感器将尝试捕获预计 40 个不良药物事件的数据。将比较生物传感器检测 OIRD 的能力与使用管理药物过量标准协议的工作人员确定的事件。测量包括(1)生物传感器测量的胸壁运动,安全地传输到云端,并进行分析以完善药物过量检测算法,(2)由现场工作人员识别的急性事件或潜在药物过量。可接受性将通过参与者在整个研究过程中愿意回答的多次反馈问卷进行衡量。

结果

截至 2024 年 4 月,共招募了 47 名参与者,已收集了 1145 次注射事件的数据,包括 10 次药物过量事件。这包括 17 名女性和 30 名男性,平均年龄为 45 岁。数据分析正在进行中。

结论

本方案为在 SIF 中推进阿片类药物过量预防的可穿戴技术奠定了基础。该研究将提供胸壁运动数据和相关的药物过量数据,这些数据将用于训练一种算法,使生物传感器能够检测到药物过量。该研究将为 OIRD 提供重要的见解,强调生物传感器在实时干预策略方面的潜在进展。

国际注册报告标识符(IRRID):DERR1-10.2196/57367。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验