Vo Thi
Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Soft Matter. 2024 May 1;20(17):3554-3576. doi: 10.1039/d4sm00177j.
Synthesizing reconfigurable nanoscale synthons with predictive control over shape, size, and interparticle interactions is a holy grail of bottom-up self-assembly. Grand challenges in their rational design, however, lie in both the large space of experimental synthetic parameters and proper understanding of the molecular mechanisms governing their formation. As such, computational and theoretical tools for predicting and modeling building block interactions have grown to become integral in modern day self-assembly research. In this review, we provide an in-depth discussion of the current state-of-the-art strategies available for modeling ligand functionalized nanoparticles. We focus on the critical role of how ligand interactions and surface distributions impact the emergent, pre-programmed behaviors between neighboring particles. To help build insights into the underlying physics, we first define an "ideal" limit - the short ligand, "hard" sphere approximation - and discuss all experimental handles through the lens of perturbations about this reference point. Finally, we identify theories that are capable of bridging interparticle interactions to nanoscale self-assembly and conclude by discussing exciting new directions for this field.
合成具有对形状、尺寸和粒子间相互作用的预测控制能力的可重构纳米级合成子是自下而上自组装的圣杯。然而,其合理设计面临的重大挑战在于实验合成参数的庞大空间以及对控制其形成的分子机制的恰当理解。因此,用于预测和建模构建块相互作用的计算和理论工具已成为现代自组装研究中不可或缺的一部分。在本综述中,我们深入讨论了目前可用于对配体功能化纳米粒子进行建模的最先进策略。我们关注配体相互作用和表面分布如何影响相邻粒子之间出现的、预先编程的行为这一关键作用。为了有助于深入了解潜在的物理原理,我们首先定义一个“理想”极限——短配体、“硬”球近似——并通过围绕这个参考点的微扰视角来讨论所有实验手段。最后,我们确定能够将粒子间相互作用与纳米级自组装联系起来的理论,并通过讨论该领域令人兴奋的新方向来得出结论。