Suppr超能文献

基于监督机器学习的生物神经网络分类与推断。

Objective Supervised Machine Learning-Based Classification and Inference of Biological Neuronal Networks.

机构信息

Computational Biophysics and Imaging Group/BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland.

School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK.

出版信息

Molecules. 2022 Sep 23;27(19):6256. doi: 10.3390/molecules27196256.

Abstract

The classification of biological neuron types and networks poses challenges to the full understanding of the human brain's organisation and functioning. In this paper, we develop a novel objective classification model of biological neuronal morphology and electrical types and their networks, based on the attributes of neuronal communication using supervised machine learning solutions. This presents advantages compared to the existing approaches in neuroinformatics since the data related to mutual information or delay between neurons obtained from spike trains are more abundant than conventional morphological data. We constructed two open-access computational platforms of various neuronal circuits from the Blue Brain Project realistic models, named Neurpy and Neurgen. Then, we investigated how we could perform network tomography with cortical neuronal circuits for the morphological, topological and electrical classification of neurons. We extracted the simulated data of 10,000 network topology combinations with five layers, 25 morphological type (m-type) cells, and 14 electrical type (e-type) cells. We applied the data to several different classifiers (including Support Vector Machine (SVM), Decision Trees, Random Forest, and Artificial Neural Networks). We achieved accuracies of up to 70%, and the inference of biological network structures using network tomography reached up to 65% of accuracy. Objective classification of biological networks can be achieved with cascaded machine learning methods using neuron communication data. SVM methods seem to perform better amongst used techniques. Our research not only contributes to existing classification efforts but sets the road-map for future usage of brain-machine interfaces towards an in vivo objective classification of neurons as a sensing mechanism of the brain's structure.

摘要

生物神经元类型和网络的分类对全面理解人类大脑的组织和功能提出了挑战。在本文中,我们开发了一种新颖的基于监督机器学习解决方案的生物神经元形态和电类型及其网络的客观分类模型。与神经信息学中现有的方法相比,这具有优势,因为从尖峰序列中获得的神经元之间的互信息或延迟相关的数据比传统的形态数据更为丰富。我们使用来自蓝脑计划现实模型的两个名为 Neurpy 和 Neurgen 的开放获取计算平台构建了各种神经元电路。然后,我们研究了如何对皮质神经元电路进行网络层析成像,以对神经元进行形态、拓扑和电分类。我们提取了 10000 个具有 5 个层、25 种形态类型(m 型)细胞和 14 种电类型(e 型)细胞的网络拓扑组合的模拟数据。我们将数据应用于几种不同的分类器(包括支持向量机(SVM)、决策树、随机森林和人工神经网络)。我们达到了高达 70%的准确率,并且使用网络层析成像推断生物网络结构的准确率高达 65%。使用神经元通信数据的级联机器学习方法可以实现生物网络的客观分类。SVM 方法似乎比其他技术表现更好。我们的研究不仅对现有的分类工作做出了贡献,还为未来使用脑机接口对神经元进行活体客观分类作为大脑结构的传感机制铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b8/9573053/4fa76eb4fc79/molecules-27-06256-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验