AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK.
Earth and Planetary Laboratory, Carnegie Institution of Washington, Washington, DC, USA.
Astrobiology. 2024 May;24(5):538-558. doi: 10.1089/ast.2023.0013. Epub 2024 Apr 22.
NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic (49% relative abundance) and the sulfate reducer (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers and (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.
美国国家航空航天局(NASA)的“毅力号”和欧洲航天局(ESA)的“罗莎琳德·富兰克林号”漫游车的科学目标是在火星上寻找古代生命的证据。由于微生物-矿物相互作用而形成的地球化学生物特征可能在这方面发挥关键作用,因为它们可以在地球上保存数百万年,而火星上也可能如此。以前的实验室实验已经探索了在封闭系统中生物特征的形成,但这些实验并不能代表在火星自然环境中发现的开放系统,例如通道和湖泊。在这项研究中,我们使用全球风化层模拟物(OUCM-1)、热化学模拟地下水和厌氧微生物群落进行了环境模拟实验,以探索在火星上合理的开放和封闭系统中形成地球化学生物特征。这项初步研究表明,在 28 天后,微生物群落的多样性存在差异。在开放系统模拟(流动实验)中,产乙酸菌(相对丰度为 49%)和硫酸盐还原菌(相对丰度为 43%)是主要属。而在批次实验中,硫酸盐还原菌和(总相对丰度为 95%)是主要属。我们还发现了在流动实验中矿物溶解增强的证据,但在有生物存在的情况下几乎没有发现次生沉积物的证据。相比之下,在有生物存在的批次实验中形成了 SiO 和 Fe 沉积物,但在非生物条件下没有形成。这些初步实验的结果表明,开放系统和封闭系统之间可以产生不同的地球化学生物特征,因此,开放系统中生物特征的形成值得进一步研究。