Suppr超能文献

利用多功能降解菌修复土壤中的聚乙烯和磺胺类抗生素。

Polyethylene and sulfa antibiotic remediation in soil using a multifunctional degrading bacterium.

机构信息

College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.

College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.

出版信息

Sci Total Environ. 2024 Jun 20;930:172619. doi: 10.1016/j.scitotenv.2024.172619. Epub 2024 Apr 20.

Abstract

To obtain a multifunctional bacterium that can effectively degrade polyethylene (PE) and sulfonamide antibiotics (SAs), PE and SAs were selected as the primary research objects. Multifunctional degrading bacteria were isolated and screened from an environment in which plastics and antibiotics have existed for a long time. An efficient degrading strain, Raoultella sp., was screened by measuring the degradation performance of PE and SAs. We analyzed the changes in the microbial community of indigenous bacteria using 16S rRNA. After 60 d of degradation at 28 °C, the Raoultella strain to PE degradation rate was 4.20 %. The SA degradation rates were 96 % (sulfonathiazole, (ST)), 86 % (sulfamerazine, (SM)), 72 % (sulfamethazine, (SM2)) and 64 % (sulfamethoxazole, (SMX)), respectively. This bacterium increases the surface roughness of PE plastic films and produces numerous gullies, pits, and folds. In addition, after 60 d, the contact angle of the plastic film decreased from 92.965° to 70.205°, indicating a decrease in hydrophobicity. High-throughput sequencing analysis of the degrading bacteria revealed that the Raoultella strain encodes enzymes involved in PE and SA degradation. The results of this study not only provide a theoretical basis for further study of the degradation mechanism of multifunctional and efficient degrading bacteria but also provide potential strain resources for the biodegradation of waste plastics and antibiotics in the environment.

摘要

为了获得能够有效降解聚乙烯(PE)和磺胺类抗生素(SAs)的多功能细菌,选择 PE 和 SAs 作为主要研究对象。从长期存在塑料和抗生素的环境中分离和筛选多功能降解细菌。通过测量 PE 和 SAs 的降解性能,筛选出高效降解菌株 Raoultella sp.。我们使用 16S rRNA 分析了土著细菌微生物群落的变化。在 28°C 下降解 60 天后,Raoultella 对 PE 的降解率为 4.20%。SA 的降解率分别为 96%(磺胺噻唑,(ST))、86%(磺胺甲恶唑,(SM))、72%(磺胺甲嘧啶,(SM2))和 64%(磺胺甲恶唑,(SMX))。该细菌增加了 PE 塑料薄膜的表面粗糙度,并产生了许多沟壑、凹坑和褶皱。此外,60 天后,塑料薄膜的接触角从 92.965°降低到 70.205°,表明疏水性降低。降解菌的高通量测序分析表明,Raoultella 菌株编码参与 PE 和 SA 降解的酶。该研究结果不仅为进一步研究多功能高效降解菌的降解机制提供了理论依据,还为环境中废塑料和抗生素的生物降解提供了潜在的菌株资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验