High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen, China.
Department of Earth System Science, Tsinghua University, Beijing, 100084, China.
Sci Data. 2024 Apr 22;11(1):414. doi: 10.1038/s41597-024-03223-1.
Nighttime light remote sensing has been an increasingly important proxy for human activities. Despite an urgent need for long-term products and pilot explorations in synthesizing them, the publicly available long-term products are limited. A Night-Time Light convolutional LSTM network is proposed and applied the network to produce a 1-km annual Prolonged Artificial Nighttime-light DAtaset of China (PANDA-China) from 1984 to 2020. Assessments between modeled and original images show that on average the RMSE reaches 0.73, the coefficient of determination (R) reaches 0.95, and the linear slope is 0.99 at the pixel level, indicating a high confidence in the quality of generated data products. Quantitative and visual comparisons witness PANDA-China's superiority against other NTL datasets in its significantly longer NTL dynamics, higher temporal consistency, and better correlations with socioeconomics (built-up areas, gross domestic product, population) characterizing the most relevant indicator in different development phases. The PANDA-China product provides an unprecedented opportunity to trace nighttime light dynamics in the past four decades.
夜间灯光遥感已成为人类活动的一个越来越重要的指标。尽管迫切需要对其进行长期产品的合成,并进行试点探索,但目前可用的长期产品却十分有限。本文提出了一种夜间灯光卷积长短期记忆网络,并应用该网络生成了 1984 年至 2020 年期间中国的 1 公里年度长时间人工夜间灯光数据集(PANDA-China)。对模型图像和原始图像之间的评估表明,平均而言,RMSE 达到 0.73,决定系数(R)达到 0.95,像素级的线性斜率为 0.99,这表明生成数据产品的质量具有较高可信度。定量和可视化比较证明,PANDA-China 相对于其他 NTL 数据集具有优势,其 NTL 动态变化时间更长、时间一致性更高,与社会经济(建成区、国内生产总值、人口)的相关性更好,这是不同发展阶段中最相关的指标。PANDA-China 产品为追溯过去四十年的夜间灯光动态提供了前所未有的机会。