Pedretti Marco, Fernández-Rodríguez Carmen, Conter Carolina, Oyenarte Iker, Favretto Filippo, di Matteo Adele, Dominici Paola, Petrosino Maria, Martinez-Chantar Maria Luz, Majtan Tomas, Astegno Alessandra, Martínez-Cruz Luis Alfonso
Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
Sci Rep. 2024 Apr 23;14(1):9364. doi: 10.1038/s41598-024-57625-7.
The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (HS) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of HS using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.
微生物中不断升级的耐药性凸显了对创新治疗策略的迫切需求,以及对细菌抵御氧化应激和抗生素防御机制的全面理解。在最近发现的屏障中,通过反向转硫途径内源性产生硫化氢(HS)成为一个值得关注的因素。在本研究中,我们探索了铜绿假单胞菌(PaCGL)胱硫醚γ-裂合酶的催化能力和晶体结构,铜绿假单胞菌是一种主要导致医院感染的多重耐药机会致病菌。除了典型的L-胱硫醚水解外,PaCGL还能有效地利用L-半胱氨酸和/或L-高半胱氨酸作为替代底物催化产生HS。与人类酶和其他病原体对应物的比较分析揭示了主要酶腔体内不同的结构特征。具体而言,一个明显折叠的入口环可能会调节底物和/或抑制剂进入催化位点。我们的研究结果为不同病原体中CGL酶的结构进化提供了重要见解,并为开发针对PaCGL的特异性抑制剂提供了新机会。