Department of Cardiovascular Medicine, Fuyang People's Hospital Affiliated to Bengbu Medical College, Fuyang, China.
Coron Artery Dis. 2024 Sep 1;35(6):471-480. doi: 10.1097/MCA.0000000000001370. Epub 2024 Apr 25.
Construction of a prediction model to predict the risk of major adverse cardiovascular events (MACE) in the long term after percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI).
Retrospective analysis of STEMI patients treated with PCI from April 2018 to April 2021 in Fuyang People's Hospital. Lasso regression was used to screen the risk factors for the first occurrence of MACE in patients, and multifactorial logistic regression analysis was used to construct a prediction model. The efficacy was evaluated by area under the ROC curve (AUC), Hosmer-Lemeshow deviance test, calibration curve, clinical decision curve (DCA) and clinical impact curve (CIC).
Logistic regression results showed that hypertension, diabetes mellitus, left main plus three branches lesion, estimated glomerular filtration rate and medication adherence were influential factors in the occurrence of distant MACE after PCI in STEMI patients ( P < 0.05). The AUC was 0.849 in the modeling group and 0.724 in the validation group; the calibration curve had a good fit to the standard curve, and the result of the Hosmer-Lemeshow test of deviance was x 2 = 7.742 ( P = 0. 459); the DCA and the CIC indicated that the predictive model could provide a better net clinical benefit for STEMI patients.
A prediction model constructed from a total of five predictor variables, namely hypertension, diabetes, left main + three branches lesions, eGFR and medication adherence, can be used to assess the long-term prognosis after PCI in STEMI patients and help in early risk stratification of patients.
构建预测模型,以预测急性 ST 段抬高型心肌梗死(STEMI)患者经皮冠状动脉介入治疗(PCI)后长期发生主要不良心血管事件(MACE)的风险。
回顾性分析 2018 年 4 月至 2021 年 4 月在富阳市人民医院接受 PCI 治疗的 STEMI 患者。使用 Lasso 回归筛选患者发生 MACE 的首发风险因素,并采用多因素 logistic 回归分析构建预测模型。通过受试者工作特征曲线(ROC)下面积(AUC)、Hosmer-Lemeshow 离散检验、校准曲线、临床决策曲线(DCA)和临床影响曲线(CIC)评估其效能。
logistic 回归结果显示,高血压、糖尿病、左主干加三支病变、估算肾小球滤过率和药物依从性是 STEMI 患者 PCI 后发生远处 MACE 的影响因素(P<0.05)。建模组的 AUC 为 0.849,验证组为 0.724;校准曲线与标准曲线拟合良好,Hosmer-Lemeshow 离散检验结果 x2=7.742(P=0.459);DCA 和 CIC 表明,该预测模型可以为 STEMI 患者提供更好的净临床获益。
由高血压、糖尿病、左主干+三支病变、eGFR 和药物依从性 5 个预测变量构建的预测模型,可以评估 STEMI 患者 PCI 后的长期预后,有助于患者的早期风险分层。