Suppr超能文献

通过构建梯度分层有序导电网络稳定硅微颗粒阳极的本体相和固体电解质界面

Stabilizing the Bulk-Phase and Solid Electrolyte Interphase of Silicon Microparticle Anode by Constructing Gradient-Hierarchically Ordered Conductive Networks.

作者信息

Ma Liang, Fang Youyou, Yang Ni, Li Ning, Chen Lai, Cao Duanyun, Lu Yun, Huang Qing, Song Tinglu, Su Yuefeng, Wu Feng

机构信息

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Innovation Center, Beijing Institute of Technology, Beijing, 100081, China.

出版信息

Adv Mater. 2024 Jul;36(30):e2404360. doi: 10.1002/adma.202404360. Epub 2024 May 9.

Abstract

The poor bulk-phase and interphase stability, attributable to adverse internal stress, impede the cycling performance of silicon microparticles (µSi) anodes and the commercial application for high-energy-density lithium-ion batteries. In this work, a groundbreaking gradient-hierarchically ordered conductive (GHOC) network structure, ingeniously engineered to enhance the stability of both bulk-phase and the solid electrolyte interphase (SEI) configurations of µSi, is proposed. Within the GHOC network architecture, two-dimensional (2D) transition metal carbides (TiCT) act as a conductive "brick", establishing a highly conductive inner layer on µSi, while the porous outer layer, composed of one-dimensional (1D) Tempo-oxidized cellulose nanofibers (TCNF) and polyacrylic acid (PAA) macromolecule, functions akin to structural "rebar" and "concrete", effectively preserves the tightly interconnected conductive framework through multiple bonding mechanisms, including covalent and hydrogen bonds. Additionally, TiCT enhances the development of a LiF-enriched SEI. Consequently, the µSi-MTCNF-PAA anode presents a high discharge capacity of 1413.7 mAh g even after 500 cycles at 1.0 C. Moreover, a full cell, integrating LiNiMnCoO with µSi-MTCNF-PAA, exhibits a capacity retention rate of 92.0% following 50 cycles. This GHOC network structure can offer an efficacious pathway for stabilizing both the bulk-phase and interphase structure of anode materials with high volumetric strain.

摘要

由于不利的内应力导致的较差的体相和界面稳定性,阻碍了硅微粒(µSi)阳极的循环性能以及高能量密度锂离子电池的商业应用。在这项工作中,提出了一种开创性的梯度分层有序导电(GHOC)网络结构,该结构经过巧妙设计,以增强µSi的体相和固体电解质界面(SEI)构型的稳定性。在GHOC网络架构中,二维(2D)过渡金属碳化物(TiCT)充当导电“砖块”,在µSi上建立高导电内层,而由一维(1D)Tempo氧化纤维素纳米纤维(TCNF)和聚丙烯酸(PAA)大分子组成的多孔外层,其功能类似于结构“钢筋”和“混凝土”,通过包括共价键和氢键在内的多种键合机制有效地保持紧密互连的导电框架。此外,TiCT增强了富含LiF的SEI的形成。因此,即使在1.0 C下循环500次后,µSi-MTCNF-PAA阳极仍具有1413.7 mAh g的高放电容量。此外,将LiNiMnCoO与µSi-MTCNF-PAA集成的全电池在50次循环后容量保持率为92.0%。这种GHOC网络结构可以为稳定具有高体积应变的阳极材料的体相和界面结构提供一条有效的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验