Zhang Biao, Dong Yanling, Han Jingrui, Zhen Yunjing, Hu Chuangang, Liu Dong
State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Adv Mater. 2023 Jul;35(29):e2301320. doi: 10.1002/adma.202301320. Epub 2023 May 31.
The poor interfacial stability and insufficient cycling performance caused by undesirable stress hinder the commercial application of silicon microparticles (µSi) as next-generation anode materials for high-energy-density lithium-ion batteries. Herein, a conceptionally novel physicochemical dual cross-linking conductive polymeric network is designed combining high strength and high toughness by coupling the stiffness of poly(acrylic acid) and the softness of carboxyl nitrile rubber, which includes multiple H-bonds, by introducing highly branched tannic acid as a physical cross-linker. Such a design enables effective stress dissipation by folded molecular chains slipping and sequential cleavage of H-bonds, thus stabilizing the electrode interface and enhancing cycle stability. As expected, the resultant electrode (µSi/PTBR) delivers an unprecedented high capacity retention of ≈97% from 2027.9 mAh g at the 19th to 1968.0 mAh g at the 200th cycle at 2 A g . Meanwhile, this unique stress dissipation strategy is also suitable for stabilizing SiO anodes with a much lower capacity loss of ≈0.012% per cycle over 1000 cycles at 1.5 A g . Atomic force microscopy analysis and finite element simulations reveal the excellent stress-distribution ability of the physicochemical dual cross-linking conductive polymeric network. This work provides an efficient energy-dissipation strategy toward practical high-capacity anodes for energy-dense batteries.
由不良应力导致的界面稳定性差和循环性能不足,阻碍了硅微粒(µSi)作为下一代高能量密度锂离子电池负极材料的商业应用。在此,通过引入高度支化的单宁酸作为物理交联剂,将聚丙烯酸的刚性与羧基丁腈橡胶的柔性相结合,设计了一种概念上新颖的物理化学双交联导电聚合物网络,该网络具有高强度和高韧性,包含多个氢键。这种设计能够通过折叠分子链的滑动和氢键的顺序断裂实现有效的应力耗散,从而稳定电极界面并提高循环稳定性。正如预期的那样,所得电极(µSi/PTBR)在2 A g的电流密度下,从第19次循环时的2027.9 mAh g到第200次循环时的1968.0 mAh g,实现了前所未有的约97%的高容量保持率。同时,这种独特的应力耗散策略也适用于稳定SiO负极,在1.5 A g的电流密度下,1000次循环中每循环的容量损失约为0.012%,要低得多。原子力显微镜分析和有限元模拟揭示了物理化学双交联导电聚合物网络出色的应力分布能力。这项工作为面向实用高容量负极的能量密集型电池提供了一种有效的能量耗散策略。