Conrads Lukas, Schüler Luis, Wirth Konstantin G, Wuttig Matthias, Taubner Thomas
Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany.
Nat Commun. 2024 Apr 24;15(1):3472. doi: 10.1038/s41467-024-47841-0.
Tailoring light-matter interaction is essential to realize nanophotonic components. It can be achieved with surface phonon polaritons (SPhPs), an excitation of photons coupled with phonons of polar crystals, which also occur in 2d materials such as hexagonal boron nitride or anisotropic crystals. Ultra-confined resonances are observed by restricting the SPhPs to cavities. Phase-change materials (PCMs) enable non-volatile programming of these cavities based on a change in the refractive index. Recently, the plasmonic PCM InSbTe (IST) was introduced which can be reversibly switched from an amorphous dielectric state to a crystalline metallic one in the entire infrared to realize numerous nanoantenna geometries. However, reconfiguring SPhP resonators to modify the confined polaritons modes remains elusive. Here, we demonstrate direct programming of confined SPhP resonators by phase-switching IST on top of a polar silicon carbide crystal and investigate the strongly confined resonance modes with scanning near-field optical microscopy. Reconfiguring the size of the resonators themselves result in enhanced mode confinements up to a value of Finally, unconventional cavity shapes with complex field patterns are explored as well. This study is a first step towards rapid prototyping of reconfigurable SPhP resonators that can be easily transferred to hyperbolic and anisotropic 2d materials.
定制光与物质的相互作用对于实现纳米光子组件至关重要。这可以通过表面声子极化激元(SPhPs)来实现,SPhPs是光子与极性晶体声子耦合产生的一种激发,在诸如六方氮化硼或各向异性晶体等二维材料中也会出现。通过将SPhPs限制在腔内可以观察到超受限共振。相变材料(PCMs)能够基于折射率的变化对这些腔进行非易失性编程。最近,引入了等离子体相变材料InSbTe(IST),它可以在整个红外波段从非晶介电态可逆地切换到晶体金属态,以实现多种纳米天线几何结构。然而,重新配置SPhP谐振器以改变受限极化激元模式仍然难以实现。在此,我们展示了通过在极性碳化硅晶体顶部对IST进行相切换来直接对受限SPhP谐振器进行编程,并利用扫描近场光学显微镜研究强受限共振模式。重新配置谐振器本身的尺寸会导致模式限制增强,最终达到一个值。最后,还探索了具有复杂场模式的非常规腔形状。这项研究是朝着可重构SPhP谐振器快速原型制作迈出的第一步,这种谐振器可以轻松转移到双曲线和各向异性二维材料上。