Jeong Byeonghwa, Allen Jeff, Chapple Karen
Postdoctoral Fellow, School of Cities, University of Toronto, Toronto, Canada.
Lead, Data Visualization, School of Cities, University of Toronto, Toronto, Canada.
Sci Data. 2024 Apr 24;11(1):422. doi: 10.1038/s41597-024-03275-3.
The purpose of this study is to define the geographic boundaries of commercial areas by creating a consistent definition, combining various commercial area types, including downtowns, retail centres, financial districts, and other employment subcentres. Our research involved the collection of office, retail and job density data from 69 metropolitan regions across USA and Canada. Using this data, we conducted an unsupervised image segmentation model and clustering methods to identify distinctive commercial geographic boundaries. As a result, we identified 23,751 commercial areas, providing a detailed perspective on the commercial landscape of metropolitan areas in the USA and Canada. In addition, the generated boundaries were successfully validated through comparison with previously established commerce-related boundaries. The output of this study has implications for urban and regional planning and economic development, delivering valuable insights into the overall commercial geography in the region. The commercial boundary and used codes are freely available on the School of Cities Github, and users can reuse, reproduce and modify the boundaries.
本研究的目的是通过创建一个一致的定义,将包括市中心、零售中心、金融区和其他就业次中心在内的各种商业区类型结合起来,来界定商业区的地理边界。我们的研究涉及从美国和加拿大的69个大都市地区收集办公、零售和就业密度数据。利用这些数据,我们进行了无监督图像分割模型和聚类方法,以识别独特的商业地理边界。结果,我们识别出了23751个商业区,提供了对美国和加拿大大都市地区商业景观的详细视角。此外,通过与先前建立的与商业相关的边界进行比较,成功验证了生成的边界。本研究的成果对城市和区域规划以及经济发展具有启示意义,为该地区的整体商业地理提供了有价值的见解。商业边界和使用的代码可在城市学院的Github上免费获取,用户可以重新使用、复制和修改这些边界。