ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
Nature. 2024 Apr;628(8009):746-751. doi: 10.1038/s41586-024-07156-y. Epub 2024 Apr 24.
The valley degree of freedom of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures or specific material engineering, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.
材料中的谷自由度有望为节能型信息存储开辟道路,为量子信息处理带来诱人的前景。目前利用谷极化面临的挑战是对称条件,需要使用单层结构或特定的材料工程、非共振光学控制以避免能量耗散,以及以光速度切换谷极化的能力。我们使用体相 MoS a 中心对称材料展示了对谷极化的全光学和非共振控制,该材料在谷点处没有 Berry 曲率。我们的通用方法利用具有螺旋形轨道角动量的三叶形光学控制脉冲来切换材料的电子拓扑结构,并通过简单的相位旋转瞬时打破时间和空间反演对称性,从而诱导谷极化。我们通过非共线光学探测脉冲的二次谐波的瞬态产生来确认谷极化,这取决于三叶形相位旋转。研究表明,对谷自由度的直接光学控制不仅限于单层结构。实际上,这种控制对于任意层数的系统和体材料都是可行的。非共振谷控制是通用的,并且在光速度下,为在量子相干时间尺度上运行的高效多材料谷电子器件的工程学开辟了可能性。