Pan Linfeng, Dai Linjie, Burton Oliver J, Chen Lu, Andrei Virgil, Zhang Youcheng, Ren Dan, Cheng Jinshui, Wu Linxiao, Frohna Kyle, Abfalterer Anna, Yang Terry Chien-Jen, Niu Wenzhe, Xia Meng, Hofmann Stephan, Dyson Paul J, Reisner Erwin, Sirringhaus Henning, Luo Jingshan, Hagfeldt Anders, Grätzel Michael, Stranks Samuel D
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Nature. 2024 Apr;628(8009):765-770. doi: 10.1038/s41586-024-07273-8. Epub 2024 Apr 24.
Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight. Following a decade of advancement, CuO photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance. Here we demonstrate performance of CuO photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal CuO thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal CuO samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline CuO photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.
太阳能燃料提供了一种通过利用阳光来提供可持续燃料的有前景的方法。经过十年的发展,氧化铜光阴极能够实现与采用成熟光伏材料的光电极相当的性能。然而,仍未被充分理解的大量体电荷载流子复合现象仍然限制了性能的进一步提升。在此,我们通过利用对单晶氧化铜薄膜中载流子复合和传输的新的概念性理解,展示了超越现有技术水平的氧化铜光阴极性能。利用常压液相外延法,我们提出了一种生长具有三种晶体取向的单晶氧化铜样品的新方法。使用宽带飞秒瞬态反射光谱测量来量化各向异性的光电特性,据此发现沿[111]方向的载流子迁移率比沿其他取向的载流子迁移率高一个数量级。受这些发现的推动,我们使用一种简单且低成本的方法开发了一种具有极其纯净的(111)取向和(111)终止面的多晶氧化铜光阴极,在空气质量1.5G光照下,相对于可逆氢电极,在0.5V时可提供7 mA/cm²的电流密度(比现有技术水平的电沉积器件提高了70%以上),并且能够稳定运行至少120小时。