Suppr超能文献

多项目晶圆,供独立代工厂用于灵活的薄膜电子。

Multi-project wafers for flexible thin-film electronics by independent foundries.

机构信息

ESAT, KU Leuven, Leuven, Belgium.

imec, Leuven, Belgium.

出版信息

Nature. 2024 May;629(8011):335-340. doi: 10.1038/s41586-024-07306-2. Epub 2024 Apr 24.

Abstract

Flexible and large-area electronics rely on thin-film transistors (TFTs) to make displays, large-area image sensors, microprocessors, wearable healthcare patches, digital microfluidics and more. Although silicon-based complementary metal-oxide-semiconductor (CMOS) chips are manufactured using several dies on a single wafer and the multi-project wafer concept enables the aggregation of various CMOS chip designs within the same die, TFT fabrication is currently lacking a fully verified, universal design approach. This increases the cost and complexity of manufacturing TFT-based flexible electronics, slowing down their integration into more mature applications and limiting the design complexity achievable by foundries. Here we show a stable and high-yield TFT platform for the fabless manufacturing of two mainstream TFT technologies, wafer-based amorphous indium-gallium-zinc oxide and panel-based low-temperature polycrystalline silicon, two key TFT technologies applicable to flexible substrates. We have designed the iconic 6502 microprocessor in both technologies as a use case to demonstrate and expand the multi-project wafer approach. Enabling the foundry model for TFTs, as an analogy of silicon CMOS technologies, can accelerate the growth and development of applications and technologies based on these devices.

摘要

灵活且大面积的电子设备依赖薄膜晶体管 (TFT) 来制造显示器、大面积图像传感器、微处理器、可穿戴式医疗保健贴片、数字微流控等。尽管基于硅的互补金属氧化物半导体 (CMOS) 芯片是使用单个晶圆上的多个裸片制造的,并且多项目晶圆概念允许在同一裸片内聚合各种 CMOS 芯片设计,但 TFT 制造目前缺乏经过充分验证的通用设计方法。这增加了制造基于 TFT 的柔性电子产品的成本和复杂性,减缓了它们集成到更成熟应用中的速度,并限制了代工厂所能实现的设计复杂性。在这里,我们展示了一种用于无晶圆厂制造两种主流 TFT 技术的稳定且高产的 TFT 平台,这两种技术是适用于柔性基板的关键 TFT 技术:基于晶圆的非晶铟镓锌氧化物和基于面板的低温多晶硅。我们已经在这两种技术中设计了标志性的 6502 微处理器作为用例,以展示和扩展多项目晶圆方法。为 TFT 启用代工厂模型,就像硅 CMOS 技术的类比一样,可以加速基于这些器件的应用和技术的增长和发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a50c/11078730/bc7788b9d4da/41586_2024_7306_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验