Suppr超能文献

一种用于尖峰神经形态应用的混合解决方案的可调谐多时间尺度铟镓锌氧化物薄膜晶体管神经元。

A tunable multi-timescale Indium-Gallium-Zinc-Oxide thin-film transistor neuron towards hybrid solutions for spiking neuromorphic applications.

作者信息

Velazquez Lopez Mauricio, Linares-Barranco Bernabe, Lee Jua, Erfanijazi Hamidreza, Patino-Saucedo Alberto, Sifalakis Manolis, Catthoor Francky, Myny Kris

机构信息

EPIC, Large Area Thin-film Transistor Electronics, imec, Kapeldreef 75, 3001, Leuven, Belgium.

ES&S, COSIC, ESAT, KU Leuven, 3590, Diepenbeek, Belgium.

出版信息

Commun Eng. 2024 Jul 23;3(1):102. doi: 10.1038/s44172-024-00248-7.

Abstract

Spiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such hardware, mainly digital, is typically built on mature silicon nodes. Future artificial intelligence applications will demand the execution of tasks with increasing complexity and over timescales spanning several decades. The multi-timescale requirements for certain tasks cannot be attained effectively enough through the existing silicon-based solutions. Indium-Gallium-Zinc-Oxide thin-film transistors can alleviate the timescale-related shortcomings of silicon platforms thanks to their bellow atto-ampere leakage currents. These small currents enable wide timescale ranges, far beyond what has been feasible through various emerging technologies. Here we have estimated and exploited these low leakage currents to create a multi-timescale neuron that integrates information spanning a range of 7 orders of magnitude and assessed its advantages in larger networks. The multi-timescale ability of this neuron can be utilized together with silicon to create hybrid spiking neural networks capable of effectively executing more complex tasks than their single-technology counterparts.

摘要

脉冲神经网络算法需要经过微调的神经形态硬件来提高其有效性。这种主要为数字式的硬件通常构建在成熟的硅节点上。未来的人工智能应用将需要执行复杂度不断增加且时间跨度长达数十年的任务。现有的基于硅的解决方案无法有效地满足某些任务的多时间尺度要求。铟镓锌氧化物薄膜晶体管由于其亚阿托安培的漏电流,能够缓解硅平台在时间尺度方面的缺点。这些小电流能够实现宽时间尺度范围,远远超出各种新兴技术所能达到的范围。在此,我们估算并利用了这些低漏电流来创建一个多时间尺度神经元,该神经元能够整合跨越7个数量级范围的信息,并评估了其在更大网络中的优势。这种神经元的多时间尺度能力可以与硅结合使用,以创建混合脉冲神经网络,与单一技术的同类网络相比,能够有效地执行更复杂的任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14d6/11266500/df07fe8ec201/44172_2024_248_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验